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Abstract 

This paper discusses the relationship between feeding line delay compensation and direction of arrival 

(DOA) estimation in an array-type directional borehole radar. In this radar, since the space available for an 

array antenna is limited by the borehole diameter, DOA estimation is based on small travel time differences 

among array elements, and accurate compensation of feeding line delays is important. Computer simulation 

confirmed that radar probe rotation in a borehole leads to errors in DOA estimation of greater than 15 if 

the delays associated with the feeding array antenna elements are not compensated to within 0.1 ns. This 

may be caused by a failure to measure the time delays of electrical circuits around the feeding points of the 

antenna elements. In this case, we suggest that the lengths of system components other than the coaxial 

cables should be kept to less than 3 cm. Based on these investigations, we developed an array-type 

directional borehole radar for a geotechnical project to locate foundation piles. In a field experiment, we 

confirmed that DOA estimation errors were below about 15, although the radar probe rotated through more 

than 180 during the measurement, thanks to correct compensation of the cables. With the correct 

compensation, we demonstrated 3-D location of a buried cylindrical conducting object, which was set 2 m 

from the radar in wet soil. We were able to estimate the reflection point position with an accuracy of 34 cm, 

which is the averaged error of the 3-D location, while allowing the radar probe to rotate. 
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INTRODUCTION 

Many structure reinforcement projects for buildings, public facilities, and infrastructures have been 

undertaken in densely populated alluvial plain areas, such as the city of Tokyo, to achieve satisfactory 

earthquake hazard resilience. Detecting existing buried structural objects such as foundation piles and sheet 

metal piling walls is an early-stage exploration target in these construction projects. For this purpose, 

electrical resistivity imaging (Arjwech et al. 2013) may be useful for foundation pile location. In order to 



 

 

evaluate a foundation pile, several methods such as pile driving monitoring are used (Rausche and Robinson 

2010). If a borehole is drilled near the object, it may be used for such measurements. A parallel seismic 

method (Sack and Olson 2010; Niederleithinger and Fritsche 2010) and a magnetic method (Dong et al. 

2011) with a borehole have also been used to evaluate foundations.  

Ground penetrating radar (GPR), which is a radar system operated at ground level and directed toward 

the earth, is another tool used in such projects (Daniels 2004). Soundings made with GPR have provided 

valuable information on objects buried in the subsoil up to several metres below the ground surface. Due to 

the sounding depth limitation of GPR, borehole radar has started to be utilized at construction sites. Borehole 

radar is a type of ground penetrating radar (Slob et al. 2010) in which frequencies between 20 and 100 MHz 

are used for long range detection. Most conventional borehole radar systems for single borehole application 

use two vertical dipole antennae, which are omnidirectional. This type of radar has been applied to the 

detection of buried foundation piles (Yamashita and Toshioka 2002), and it is useful in 2-D space 

measurement, for the determination of the depth and the radial distance (range) of targets parallel to the 

measurement borehole. However, in order to detect and range objects such as foundation piles in 3-D space 

using a single borehole, a directional borehole radar system is needed. As a directive antenna for the 

directional borehole radar, a cavity-backed antenna has been used; this system mechanically rotates the 

antenna inside the borehole (van Dongen 2002; van Waard et al. 2004). A cylindrical conformal directional 

monopole antenna was proposed for the directional borehole radar (Liang et al. 2012). A cross-loop antenna, 

which consists of loops having a figure-eight radiation pattern in air, has also been tested (Siever 2000; 

Gundelach and Eisenburger 2007; Gundelach et al. 2009; Borchert et al. 2009). These designs all make use 

of the antenna radiation pattern to achieve a directional borehole radar. An array-type directional borehole 

radar that uses an array antenna has also been developed. First, a small loop array antenna was adopted (Sato 

and Tanimoto 1992; Ebihara et al. 2000). This was followed by the introduction of a dipole array antenna, 

whose elements were fed by an optical modulator system (Ebihara 2004; Ebihara et al. 2006; Sato and 

Takayama 2007; Takayama and Sato 2007), or coaxial cables (Ebihara et al. 2012). The latter system has 

been used for 3-D imaging of a fault (Ebihara et al. 2013), and researchers succeeded in reducing the bore 

size of the antenna through the addition of ferrite cores (Ebihara et al. 2015). With such an array antenna, 

one may measure the arrival time difference of the array signals to estimate the signals’ directions of arrival 

(DOA). 
If we choose the dipole array antenna fed by coaxial cables, the measured arrival times may depend on 

the cable delays. Maximum values of the arrival time difference among the antenna elements are usually 

between 1 ns and 0.5 ns, while the operating frequency band is usually between 10 and 300 MHz. In this 

case, the time delay in the coaxial cables used to feed the antenna elements can influence measurement of 

the arrival times and must therefore be compensated for carefully. If this is not done correctly, it may lead to 

systematic errors in the DOA estimation. For the most accurate data, one must know the relationship between 

accuracy of compensation for the cable time delay and the error in DOA estimation. 

In the systems shown by Ebihara et al. (2012; 2013; 2015), the radar probe was fixed in a borehole with 

a dielectric rod, and we could control rotation of the radar probe. If the radar probe is placed at depths greater 

than a few scores of metres, it may be difficult to control the probe rotation mechanically. This is because 

borehole constriction or mechanical flexure may lead to the radar probe becoming stuck in the borehole. 

Instead of using a rigid rod, a method to pull up the radar probe with a rope is preferable in deep boreholes. 

We usually scan the radar probe in a borehole, and stop to acquire radar data every few centimetres. If the 

radar probe is pulled up with a rope, the probe may rotate naturally between the measurement levels. In this 

case, we need to investigate the relationship between the radar probe rotation and the estimation of DOA, 

when compensation for the cable time delay is not accurate. 

The goal of this paper is to locate a vertical cylinder separated from a vertical borehole by 2 m, with an 

error less than 0.5 m in 3-D space, under the condition that the radar probe is allowed to rotate by more than 

180 . In order to achieve this goal, DOA estimation errors should be less than about 15. In particular, we 

need to examine the relationship between compensation accuracy of feeding line time delay and DOA 

estimation in an array-type directional borehole radar. First, we formulate a problem for DOA estimation 

under the conditions that a) there are time delays which are not compensated, and b) the radar probe is 

allowed to rotate in the borehole. In the second section, we show the results of a computer simulation. Finally, 

we estimate the 3-D location of a conducting cylinder in soil with the recently developed array-type 

directional borehole radar. 

 

DESCRIPTION OF RADAR SYSTEM 

Radar system: ReflexTracker 



 

 

Our target borehole diameter is 67 mm, equivalent to the inner diameter of polyvinyl chloride pipe widely 

used in geotechnical fields (VP65, Japanese Industrial Standards). In this case, considering the thickness of 

the fiber-reinforced plastic (FRP)  vessel used for housing the antennae and allowing a gap between the 

vessel and the borehole wall sufficient to avoid getting the radar probe stuck, the diameter of the radar probe 

should be smaller than about 60 mm. For this type of thin radar probe, we may consider adopting an array 

antenna for the directive antenna. 

We have developed a new directional borehole system suitable for commercial use. This radar system is 

called ReflexTrackerTM. In this system, we adopted the dipole array fed by coaxial cables as shown in Fig. 

1. Based on prior work (Ebihara 2015), we carefully designed the size of the dipole array antenna to be 

appropriate for use in a borehole. We determined all the antenna parameters theoretically, reducing 

electromagnetic mutual coupling among antenna elements, feeding lines, and a centred conducting cylinder 

(CCC), including the other sensors. In this theoretical analysis, the borehole effects, which comprise the 

influence of the borehole on radar signals, are considered. Although the antennae are mounted on an acrylic 

resin cylinder whose diameter is about 4 cm, we may ignore all the electromagnetic mutual coupling. 

The type of the radar used in this study is a step-frequency radar. In the frequency band between 5 MHz 

and 500 MHz, precise measurement was carried out using a vector network analyzer (VNA). All the data 

acquired by the radar probe were transmitted to the surface equipment immediately after measurement 

using optical links. The surface equipment consists of a carrying case, a personal computer, and a portable 

VNA as shown in Fig. 2. The carrying case holds the system electronics, including a microcomputer, 

amplifiers, laser dipoles, photodiodes, and batteries. The entire system, including the surface equipment 

and radar probe, was designed to work with rechargeable batteries. We summarize the specifications of the 

ReflexTracker in Table 1. 

 

Performance of compass system 

The system is equipped with microelectromechanical system (MEMS)-based sensors to measure the 3D 

attitude of the radar probe, removing the need for a rod to mechanically restrict the radar probe. Since there 

was no attitude sensor in the earlier systems used by Ebihara et al. (2012; 2013; 2015), rotation of the radar 

sonde was controlled by a rod. The MEMS-based sensors are included inside the thick part of the CCC, 

whose diameter is 40 mm and length 650 mm. The CCC also includes a radio frequency (RF) switching 

system, amplifiers, laser diode, and rechargeable battery. Figure 3 shows the error of the estimated rotation 

angle by a digital compass of the MEMS-based sensors, where the azimuth 0 corresponds to magnetic north. 

In this experiment, the CCC is raised vertically in air, and we rotate the CCC around the z axis, estimating 

the rotation angle with the compass in the CCC. According to the figure, we find that the average of the 

errors is less than 0.3. This means that we may ignore the error of the compass in actual measurement. 

 

 

PROBLEM FORMULATION FOR ROTATING PROBE WITH CABLE DELAY 

Consider that a plane wave with an elevation angle  and an azimuth angle  is incident on the circular 

array antenna as shown in Fig. 1. We assume that the lengths of the array elements arranged uniformly in a 

circle in a homogeneous medium are much smaller than the operating wavelength, and the antenna elements 

are omni-directional. The number of the antenna elements is M, where M ≥ 3. The waveform of the source 

signal at the transmitter feeding point in the time domain is in the form of a pulse with a bandpass spectrum, 

whose centre frequency is mf  and frequency bandwidth is widthf . We assume the following: 1) only one 

plane wave is incident on the circular array antenna elements; 2) there is no difference among gains of the 

antenna elements; and 3) the internal thermal noise levels of the array elements are the same. The arrival 

time ( , , , )iS u    of the wave received at the i-th element ( i = 1, 2, ···, M ) in the time domain can be written 

as 

 

 ( , , , ) cos ( )i iS u u          ,   (1) 

 

where the rotation angle   is the azimuth angle of the first dipole antenna element, and it is precisely known 

with the compass system although we cannot control the natural rotation of the probe. The azimuth angle of 

the i-th antenna element is defined as i  , where 
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The times u and   are the arrival time at the origin and the maximum time difference, respectively. We note 

that the difference between the equation (1) in this paper and the equation (1) shown by Ebihara et al. (2013) 

is the inclusion of rotation angle   of the dipole antenna elements around the z axis. We define Ti, (i = 1, 

2,···, M ) as the measured times when the array signals have the same phase in the time domain. These times 

can be measured in the same manner as shown by Ebihara et al. (2013). We may estimate the parameters 

ˆ ˆ ˆ( , , )u  , solving the minimization problem: 
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using the least square method. Note that, in practice, the rotation angle   is known before solving the 

minimization problem thanks to the compass system. In this paper, the measured arrival times are represented 

as 

 

i i iT U n  ,     (4) 

 

where 
iU  are the arrival times, which are measured at the feeding point of the i-th dipole antenna element. 

The time delay errors 
in  (TDE) are caused by the feeding line of the i-th dipole antenna element. If the time 

delay was compensated completely, all the TDE’s should be zero. However, it is possible that a little time 

delay remains after the compensation, and the TDE represents the delay, for which we could not compensate, 

since the TDE is too small and not known. In this paper, we investigate the effect of the TDE on estimation 

of the azimuth angle . It should be noted that we assumed that all the cable delays 
in  were zero in the 

formulation by Ebihara et al. (2012; 2013; 2015). We define the time delay error magnitude (TDEM) of the 

dipole array antenna as 

 

 
2[( [ ]) ]i in E n E n  ,    (5) 

 

where [ ]E  denotes an ensemble average. The TDEM is a standard deviation of the TDE. The TDE is fixed 

once the array antenna is built, but is not known even after measurement of time delay of the feeding lines, 

which is described in the subsection of “Measurement of feeding line time delay”. 

 

COMPUTER SIMULATION 

The Method of Moments (MoM) was used to generate array signals. We developed the MoM code to 

analyze antennae in cylindrical layers (Ebihara et al. 2012; Ebihara et al. 2015). The borehole effects are 

accounted for in the simulation with multiple cylindrical layers. In all the computer simulations, the CCC in 

Fig. 1 is ignored, since we can design a distribution of ferrite cores and size of the CCC for which interactions 

between the CCC and the array elements are minimized (Ebihara et al. 2015). We obtained the MoM data in 

the frequency domain and applied to this data a bandpass filter with a centre frequency mf   of 150 MHz and 

frequency bandwidth widthf  of 300 MHz. This means that the shape of the source pulse fed to the transmitting 

antenna is a Gaussian-shaped pulse of centre frequency 150 MHz. After this, we applied an inverse digital 

Fourier transform (IDFT), and obtained array signals in the time domain. The cable time delay errors 
in  

were generated using the MATLAB function ‘randn’, which generates normally distributed random numbers, 

and the average of in  was zero. Note that the average value of in  does not influence the DOA estimation at 

all, since we make use only of the difference of the M measured arrival times for the estimation. We assumed 

all signals to be free of thermal noise. In the following part in this section, we describe numerical simulation 

results with a plane wave model first. In these calculations, we show a relationship between the TDEM and 

the DOA error, and this error depends on the rotation angle. It is followed by describing results with a single-

hole measurement model, and we discuss the maximum limitation of the TDEM in order to realize the desired 

accuracy of our measurement. 

 



 

 

Incident plane wave model 

In order to generate the arrival times  
iU  via computer simulation, we use the model shown in Fig. 1 with 

the parameters given in Tables 2 and 3. The water is modeled with the Cole-Cole equation (Cole and Cole 

1941), and the soil is modeled with a complex refractive index model (Tran et al. 2012; Tran et al. 2014). 

Figure 4 shows an example of the array signals in time domain. The time 0s corresponds to the arrival time 

of the plane wave at the origin, which is located at the centre of the circular dipole array in Fig. 1. We can 

see slight arrival time differences among the antenna elements, due to the DOA of the plane wave. Figure 5 

shows the relationship between the TDEM and an estimated azimuth error 
error  , which is given by an 

average of the absolute values of difference between an estimated azimuth ̂  of DOA and the true azimuth. 

In this calculation, we consider two cases. One is the borehole radar case, in which the receiving dipole array 

is surrounded by cylindrical layers. The other case situates the array in homogeneous media. With both 

90    and 110    in the borehole radar case, we find that the value of 
error  is below 15 degrees, when 

TDEM is less than 0.1 ns. With 130   , we find that the TDEM should be less than about 0.05 ns to 

maintain  15error   , since the oblique incidence to the array antenna produces small arrival time differences 

among the array elements. In the homogeneous media, a circular dipole array with an array diameter 2b 

satisfying 10kb   is used, where k is the wave number of a plane wave in the media at 150 MHz. This 

parameter is given as an example of a circular array in homogeneous media in pp. 365-368 of (Balanis 2005), 

and that parameter would be common in measurement with a circular array in air. We find that the estimated 

azimuth error of the homogeneous media is small. This implies that the cable delay compensation considered 

in this paper is not an issue if there is unrestricted space available for the array. The present discussion is 

specific to array-type directional borehole radar applications, although many authors researched the circular 

array antenna in air (Jackson et al. 2014; Du et al. 2012; King et al. 2002).  

Figure 6(a) shows the estimated DOA azimuth errors, 
error , when the array antenna is rotated by the 

rotation angle   for a given TDE. Each curve in the figure is labelled with TDEM values. The scenario in 

this simulation corresponds to that of a receiving circular array allowed to rotate in a borehole, although a 

plane wave always illuminates the receiver from a fixed direction. Note that we give the statistical average 

results in Fig. 5 and only one realization in Fig. 6(a). That is why there is a difference of the errors between 

the two figures, even if the same parameters are used. It should be noted that the estimated DOA azimuth 

error depends on the rotation angle as well as the given TDE. In order to explain the cause of this dependency, 

we describe the process of obtaining the estimations in two specific cases as follows. Figures 6 (b) and (c) 

show the fitted arrival times ˆ ˆ ˆ( , , , )iS u    and  the measured times 
iT with the rotation angle 10    and 

80 , respectively, solving the minimization problem in the equation (3). In both the two figures, the blue 

curves, which are the fitted arrival times, match the blue circles, which are the measured times, with 0nsn  . 

The estimated directions, which are indicated by the blue arrows, are equal to the true directions, and this 

corresponds to the fact that the error 
error  is zero with 0sn  and 10    or 80   in Figure 6(a). The TDE 

makes the measured arrival times with 0sn   change to those with 0.1nsn  , which are represented by the 

red circles. Note that the displacements of the measured times, indicated by the black arrows, are the same 

in the two figures, if the azimuth angles i  are the same, since the same TDE is used in the two figures. The 

blue arrows show the estimated DOA with 0.1nsn  . In the Figure 6(b), the phases of the blue and red 

cosine curves are almost same, suggesting that both the two estimated directions (blue and red arrows) are 

close to the true direction. This corresponds to the error error  being almost zero with 10    in Figure 6(a), 

regardless of the n value. The reason the error is small with 10    is that the given TDE does not change 

the phase of the fitted cosine curve randomly. In Figure 6(b), there is a phase difference between the red and 

blue cosine curves . In this case, the given TDE works to change the phase of the fitted cosine curve by 

chance. This leads to an error of the estimated direction of about 11 ,  as shown by the red arrows in Figure 

6(c), and the same amount of error is seen with 80   and 0.1nsn   in Figure 6(a). In Figure 6(a), the 

estimated azimuth errors error  vary with the rotation angle   with a 360  period, and reach maxima at two 

rotation angles, which are about 80  and 280  in the present simulation. When a radar probe is scanned 

over a range of depths in a borehole, the radar probe naturally rotates slightly at every depth during the 

measurement. In this measurement, we define 1  and 2  respectively as the minimum and the maximum 

rotation angles, and 2 1     as the maximum rotation angle difference (MRAD) as shown in Figure 



 

 

6(a). If 
1 2   and 

1 10   , the MRAD is almost zero, and the estimation azimuth error 
error  is very 

small, even if the TDEM is large according to Figure 6(a). This implies that a large TDEM value does not 

necessarily lead to a large estimation error 
error  with small MRAD. If the MRAD is more than 180 , it 

probably happens that the rotation angle is near about 80  or 280  at least at a certain depth during the 

measurement, and this leads to a large estimation error 
error  at that depth. This implies that both a large 

MRAD and TDEM ensures the appearance of a large estimation error during the measurement. 

 

Conducting cylinder target model 

To generate the arrival times 
iU  via computer simulation, we use the model in Fig. 7. Although the radar 

target was represented as a plane in the computer simulation by Ebihara at al. (2013), in the present work 

the target is a vertical conducting cylinder, which imitates a foundation pile in soil, and the radar probe is 

scanned parallel to the cylinder. The direction of a wave reflected from the cylinder should be constant when 

the radar probe is scanned along the borehole. The transmitting dipole antenna and the receiving dipole array 

antenna are surrounded by three cylindrical layers, which represent a housing and the medium inside the 

borehole. 

Results from the computer simulation are presented in Figure 8. Figure 8(a) shows the simulated time 

domain signal. We assume that the antennae are scanned along the z-axis, which corresponds to the depth of 

the radar probe in an actual measurement. Although we obtain six array signals at each depth, only one of 

the array signals is shown in the figure.  The reflected waves from the conducting cylinder are indicated by 

red arrows in the figure. Since the conducting cylinder is assumed to be infinitely long, the arrival time is the 

same at all depths. We expect that the elevation angle of the reflected wave is 

180 arctan(2 / ) 110      , where   is the distance between the two boreholes, and   the distance 

between the feeding points of the transmitting antenna and the receiving array (see Fig. 7). This implies that 

the DOA error, caused by the TDEM, will be similar to that for an elevation angle of 110 , according to Fig. 

5. As shown in Fig. 8(b), we provide the antenna array with a rotation angle  , assuming the antennae are 

rotated naturally in the borehole. The rotation angle variation is more than 180 over the depth range of 1 m. 

This corresponds to a value of MRAD greater than 180 and this ensures that the radar probe rotation 

influences the DOA estimation according to Fig. 6 (a). Figure 8(c) shows estimated azimuth ̂  of the arrival 

wave at each depth. The estimation is correct with 0n  s in this figure. Although the true DOA is 170    

at all the depths, the estimated DOA varies with the depth for non-zero values of n. This is because the cable 

time delay 
in  makes the DOA estimation worse, and this depends on the direction   of the first antenna 

element. We find that the estimation error is smaller than 15 if the time delay error magnitude n is equal to 

or smaller than 0.1 ns.  

The goal of the present simulation is to locate a cylinder separated from the borehole by    2 m with 

an error less than [m]l  in the azimuthal direction. This implies that the error 
error   of the estimated azimuth 

should be less than the maximum azimuth error angle, defined as 

 

l








 .     (6) 

 

If we set 0.5ml   as our numerical goal, the DOA error should be less than 0.250rad 14.3 15      . 

This value,  , is plotted in Fig. 5, and we find that the TDEM should be less than about 0.1 ns for error   , 

when 90    and 110   . As we confirmed in the case with n = 0.1 ns in Fig. 8(c), this will be sufficient 

to achieve our numerical goal.  

 

EXPERIMENTAL RESULTS 

A vertical cylinder is suitable as a radar target for this study since it matches the computer simulation 

and has a high similarity with a foundation pile. The azimuth directions of the cylinder are constant, 

regardless of radar probe depth, when the radar probe is in a vertical borehole.  

 

 



 

 

Measurement of feeding line time delay  

Figure 9 shows a block diagram of a signal transmission system between the receiving dipole antenna 

elements and the RF switching system in the ReflexTracker. Each antenna element is fed by a coaxial cable 

via a balun, and this coaxial cable is connected to the RF switching system with a sub-miniature type A 

(SMA) connector. A transformer is used as the balun. The 50  coaxial system at the right side of the 

reference plane can be compensated correctly with a calibration function included in a VNA. However, the 

time delay between the reference plane and the feeding points of the dipole antenna elements must be 

compensated manually, and this may lead to TDE values of 0in  . According to the numerical simulation 

in the previous section, these cable delays should be measured with an accuracy of 0.1 ns. We utilize the 
11S  

mode of a VNA in order to measure the time delay between the reference plane and the feeding points. In 

this case, the balun and the soldered connecters may lead to incorrect measurement of the time delay. We 

define the length L as the distance between the feeding point and the edge of the coaxial cable. In the present 

study we made the length L   3 cm
8(3 10 m/ s) (0.1ns)   , the electrical delay of which corresponds to 

0.1 ns in air at most. Figure 10 shows a system to measure the time delay between the feed point and the 

reference plane. In this measurement, we measure a complex reflection coefficient 
11S  with the feed point 

short. Observing the arrival time when the absolute value of the reflected wave from the shorted terminal is 

maximized, we measure the time delay caused by the coaxial cable. We subtract half of the measured time 

delay in this figure from the actually measured arrival time in the radar measurement. With this procedure, 

we expect that the error in the DOA azimuth angle will be less than 15  for the actual radar measurement. 

 

Single-hole measurement 

Two boreholes were drilled in the Neyagawa campus in Osaka Electro-Communication University. The 

test site is composed of wet soil. The estimated average relative permittivity of the medium is about 24, and 

we may interpret the medium as a high loss one. The field data were collected below the water table, the 

depth of which was about 90 cm. Throughout the study, the rotation angle of the probe was measured by 

MEMS-based sensors integrated into the compass system of the probe with accuracy of 0.3 , which was 

shown in the previous section.  

Figure 11 shows an experimental setup for the single-hole measurement. The transmission between the 

transmitter and the receiver was measured in the frequency domain by a VNA. We applied a bandpass filter 

and an IDFT to the frequency domain data. This IDFT outputs an analytic signal (Therrien 1992.; Cohen 

1995), assuming that there are no negative frequency components in the frequency domain before applying 

the IDFT. The real and imaginary parts of the analytic signal are related to each other by the Hilbert transform. 

We scanned the radar probe (including both the transmitting and the receiving antennae) between depths of 

4 m and 5 m in borehole 1. We inserted a conducting cylinder inside borehole 2 for a reflector. This 

conducting cylinder is expected to generate a scattered wave from the entire body. According to the drilling 

report of the borehole, the medium of the test site contains wet clay soil at depths shallower than about 4.5 

m, and wet sandy soil at the depths below that. Since clay soil is more conductive, than sandy soil generally, 

we expect that the electromagnetic wave propagates with more attenuation in the shallower depths. This may 

lead to greater scattering by the bottom of borehole 2 than by the entire cylinder. We carried out two similar 

experiments, designated Experiment A and B, on two different days. Figure 12(a) and (b) show the received 

array time domain signals in Experiment A. Note that these signals are the real parts of the analytic signals. 

We applied a bandpass filter with a centre frequency 
mf   of 150 MHz and frequency bandwidth widthf  of 

300 MHz before the inverse Fourier transform. The time axis of each dipole array data set was compensated 

with the measured time delay obtained in the previous subsection. We can see a direct wave from the 

transmitter arriving at about 20 ns at all depths in Figure 12 (a), where amplitudes of the wave at the shallower 

depths are small since the clay may attenuate the waves at those depths. We are sure that the reflected waves, 

indicated by the red arrows in the figure, arrived from borehole 2. This is because we confirmed that removal 

of the conducting cylinder changes only the waveform. Note that amplitudes of the reflected waves are small 

at the shallower depths because of the lossy medium at those depths. At each depth, the receiving dipole 

array data may be analysed using array signal processing. We picked the maxima of the absolute values of 

the analytic signals to estimate arrival times of the reflected waves. These selected times are indicated by a 

vertical red bar on each waveform in Figures 12(a) and (b). Figure 12(c) shows the estimated direction of 

the first element with the compass system, and the angles correspond to the angle  . In the figure, we find 

that the radar probe rotates naturally in the borehole with 1 164     and 2 55   , and the MRAD exceeds 

180. This leads to an estimation error that might be large at some depths. Figure 12(d) shows the estimated 



 

 

azimuths of the arrival wave. These angles correspond to the angle   in the numerical simulation. Although 

the MRAD exceeded 180, the error in the azimuth of the arrival wave was at or below 15 in all but one 

case.  

Figure 13 shows results of Experiment B, which was carried out with four antenna elements three months 

before implementation of Experiment A. These results were obtained in the same manner as in Fig. 12. The 

reflected waves from the conducting cylinder arrived at the times indicated by the red bars in Fig. 13(a) and 

(b). According to Fig. 13(c), we find that, by chance, the radar probes hardly rotated in the borehole during 

this experiment, and the MRAD was 43   with 
1 120     and 

2 77    . In Fig. 13 (d), we find that the 

estimated azimuths were within 15 from the true direction. It should be noted that the estimated azimuth 

varies with depth in Fig. 13(d) similar to the results in Fig. 12 (d), although the rotation angle   was around 

– 90 at the depths between 375 cm and 440 cm. This implies that variation of the estimated azimuths at the 

depths plotted in Fig. 12 (d) may have been due to factors other than the fact that the TDE was not zero. 

From the above discussion, we conclude that the time delay of the feeding lines had been calibrated with 

accuracy better than 0.1 ns, with the measurement of feeding lines shown in the previous subsection. One of 

other factors causing the variation of the estimated azimuths may have been the existence of some 

inhomogeneity around the borehole. This inhomogeneity may have been caused by local changes in water 

content. Note that the velocity structure of an electromagnetic wave around the circular array antenna 

influences travel time differences among array elements. If there are only cylindrical layers around the 

circular array antenna, which correspond to the borehole wall and a water layer in the borehole, we may 

apply least-square fitting with a model of plane-wave incidence to estimate the DOA (Ebihara et al. 2013). 

However, if there are local changes in water content around the borehole, the model of plane-wave incidence 

is not accurate and the DOA estimation fails.  

 

Three-dimensional estimation 

According to the results in the previous subsection, the error on the azimuthal location of the target is 

less than about 50 cm, since the error of the DOA was below about 15. This can be also confirmed as follows. 

Figure 14 shows the estimated reflection point positions. In this estimation, we used the algorithm described 

by Ebihara et al. (2013) with the array signals after compensation for cable delay, except for estimation of 

the orientation of a boundary surface. Note that there are multiple estimated points in the figure, since we 

may locate the reflection point at each depth of the radar probe. The estimated reflection points are near the 

bottom of borehole 2. This implies that the radar located borehole 2 successfully. To evaluate the location 

accuracy, we projected all the estimated reflection points on the x-y, x-z, and y-z planes in Fig. 15. It can be 

seen that almost all the distances between the estimated reflection points and the borehole 2 bottom were 

less than 50 cm.  Averaging the distances between the estimated locations and the borehole 2 bottom, we 

find the averaged error of the 3-D location to be 34 cm. This implies that we achieved the numerical goal 

established in the introduction. The mean of our estimations in 3-D space is represented by the small red 

circle in Fig. 15 at ( , , ) ( 2.01m,0.27m, 5.39m)x y z    , and the distance between it and the bottom of 

borehole 2 is 14 cm. The standard deviation of our estimation is ( , , ) (3cm,6 ,9 )r      , where r is the range, 

 is the elevation angle, and  is the azimuth angle in the spherical coordinate system with origin at 

( , , ) (0m,0m, 5.2m)x y z   . This origin coordinate is an average of all the antenna positions and is located 

at the small green circle in Fig. 14. The standard deviation of the elevation angle may be influenced by the 

fact that the target is elongated vertically.  

 

CONCLUSIONS 

This study examined the influence of the accuracy of feeding line delay compensation on DOA estimation 

in an array-type directional borehole radar. The numerical simulation confirmed that, unless cable delay is 

compensated with an accuracy of better than about 0.1 ns, measurements may contain errors of more than 

15  in DOA estimation. In this paper, time delays of the feeding lines including baluns were carefully 

measured with the 11S  mode of a VNA. We kept the cable distances, which may cause uncertain time delay 

measurement, to be less than 3 cm. We compensated for the cable delays with the time delay measured under 

this condition. The field experiments showed that the accuracy of DOA estimation was within 15 , although 

the maximum rotation angle difference exceeded 180 . This was feasible because the cable delay was 

accurately compensated to within about 0.1 ns. Thanks to the compensation, we could locate the conducting 

cylinder 2m away from the radar probe to within 50 cm in 3-D space at all depths and in lossy soil.  



 

 

In order to design a thin radar probe for an array-type directional borehole radar, we need to take into 

account the accuracy of the cable delay compensation, as well as a generalized interference criterion which 

was proposed by Ebihara et al. (2015). The allowed maximum TDEM admittedly depends on several factors, 

including the desired DOA estimation accuracy, antenna sizes, borehole size and the medium around the 

antenna. If parameters are used that differ from those in this study, one may construct a figure similar to Fig. 

5 representing the relationships between the TDEM and the estimated azimuth angle error using computer 

simulation. Based on such a figure, one may set a new maximum TDEM.  

In this paper, the array elements of the circular dipole array were much smaller than an operating 

wavelength, and we estimated DOA of the reflected wave with the arrival time differences among the dipole 

elements. In future, we may need a full wave analysis for more accurate estimation. In this case, we would 

need to model the antenna and inhomogeneity around the antenna carefully, and introduce this model in the 

signal processing (Lambot et al. 2004; Lambot and Andre 2014).    
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FIGURE 1. Model of the dipole array antenna, which was proposed by Ebihara et al. (2012; 2013; 2015). 
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FIGURE 2. ReflexTracker components: carrying case including ground surface electronics, portable VNA, 

and laptop computer (top); transmitter, directional probe, and omnidirectional probe with a diameter of 57 

mm (bottom). 

  



 

 

 

TABLE 1. Specifications of ReflexTracker 

Radar probe diameter 57 mm 

Radar probe length Up to 4.5 m, including the transmitter and receiver 

Radar probe weight 20 kg 

Type of radar Step frequency radar 

Operating frequency 5 kHz – 500 MHz 

Dynamic range between transmitter/receiver 164.5 dB 

Maximum pressure 200 m in a vertical water-filled borehole 

Carrying case, including electronics W 480 mm, D 385 mm, H 190 mm, 12 kg 

Functions: transformation between radio frequency 

and opticalsignals; monitoring of probe conditions, 

including rotation angle, tilt angle, and temperature 

Data transmission between probe and surface 

equipment 

Optical link with single mode optical fibres 

Antenna set-up Bistatic 

Transmitting antenna Dipole antenna 

Receiving antenna Dipole array antenna in directional mode; dipole 

antenna, if in non-directional mode 

Sensors included in the thick part of the CCC Triaxial compass, triaxial accelerometer, triaxial 

gyroscope, thermometer 

Battery run time 6.5 hours 

 

 

 
FIGURE 3. Evaluation of the compass system, showing rotation angle estimation errors. 
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TABLE 2. Cylindrical layer parameters representing a radar probe and a borehole in the computer 

simulation. 

 Diameter Medium Relative permittivity at 

100 MHz 

Conductivity at 100 MHz 

1st layer 2
1a = 4.7 

cm 

Air 
1 =

0  0 S/m 

2nd layer 2
2a = 5.7 

cm 

fibre reinforced 

plastic (FRP) 
2 = 6

0  0 S/m 

3rd layer 2
3a = 6.7 

cm 

Water 
3 0Re /    80.9 

3 3Im    34 10  

S/m 

Outermost 

layer 

- Soil 
4 0Re /    24.2 

4 4Im    35 10  

S/m 

0  is permittivity in vacuum. 

 

 

TABLE 3. Dipole array parameters in a borehole in the computer simulation. 

Number of the dipole antenna elements M = 6 

A total length of  the dipole antenna elements 2h = 20 cm 

Circular array diameter 2b = 3.8 cm 

 

 

 
FIGURE 4. Example of the dipole array signals in the time domain yielded by computer simulation. Model 

and parameters are given in Fig. 1 and Tables 2 and 3. DOA parameters: 90    and 10   . The rotation 

angle is 0   . The numbers in the figure denote the dipole antenna element number. 
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FIGURE 5. Dependence of DOA error on time delay error magnitude n, as a function of the elevation angle 

  of the incident plane wave in the computer simulation. For the curve labelled ‘borehole’, we use the model 

in Fig. 1 and the computation parameters given in Tables 2 and 3; for that labelled ‘homogeneous’, the 

antenna is in a lossless homogeneous media with a relative permittivity of 24. The rotation angle of the probe 

is 0   . The TDE values ( 1,2, ,6)in i   were produced using a random function, and the statistical 

average of 256 iterations is shown in this figure. 

 

 

Time delay error magnitude n (ns)

E
rr

o
r 


er
ro

r
o

f 
es

ti
m

at
ed

 a
zi

m
u

th
  


( 


)

 = 90, borehole

 = 110, borehole

 = 130, borehole

 = 90, homogeneous (r = 24), 2b = 126 cm





 

 

 
(a) 

 
(b) 
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FIGURE 6. DOA error, when the radar probe was rotated in the computer simulation. The TDE are 

1 ( 0.6424)n n    , 2 ( 0.3769)n n   , 3 1.2118n n  , 4 ( 0.6623)n n   , 5 1.5441n n   and 

6 ( 1.0736)n n   . Parameters of the dipole array antenna and cylindrical layers are given in Tables 2 and 

3. True DOA parameters: 90    and 0   . (a) Dependence of the DOA error on both the rotation angle 

   and the time delay error magnitude n. The figures (b) and (c) show a cosine curve fitted to arrival times 

for DOA estimation, for   =10  in (b) and 80  in (c). The blue and red circles are the measured arrival 

times with n = 0 ns and n = 0.1 ns, respectively, in (b) and (c). 
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FIGURE 7. MoM model to calculate the reflected wave from a conducting cylinder. Parameters of the three 

cylindrical layers and the outermost layers around the antennae are given in Table 2. The transmitting antenna 

has dimensions 2l =1.344 m and 2a =4.13 cm; the diameter of the infinitely long conducting cylinder is 

12 10cma  .   2 m.   1.48 m. 
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(a)          (b)         (c) 

FIGURE 8. Computer simulation data. (a) Received time domain signals of the first antenna element. (b) 

Azimuth angle  of the first dipole antenna element. (c) Estimated azimuth angle ̂  of arrival. The times in 

the figure are the time delay error magnitudes n. The true azimuth was 170   ; the pair of dotted blue lines 

indicate 170 15   . 
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FIGURE 9. Cables and baluns located between the antenna elements and the RF switching system. The RF 

switching system is inside the thick part of the CCC. The coaxial cables are inside the thin part of the CCC. 

 

 
FIGURE 10. Measurement of S11 of the coaxial cable and the balun. 
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FIGURE 11. Experimental setup for Experiment A and B.   1.48 m. 
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(a)                                    (b)                                            (c)                                      (d) 

FIGURE 12. Results of Experiment A. Number of the dipole antenna elements: M = 6. The data were 

collected on 25th February, 2014. (a) and (b): Time domain signals acquired at the first element. The 

amplitude scale of each waveform in (b) has been magnified by 10x over that in (a) to highlight the small 

signals at 40 to 100ns . The red arrows represent the selected arrival times of the reflected wave. (c) Estimated 

direction    of the first dipole antenna element. (d) Estimated directions ̂  of arrival. The true azimuth is 

170   , and  the dotted blue lines indicate 170 15   . 
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(a)        (b)     (c)                (d) 

FIGURE 13. Results of Experiment B, processed in the same manner as those in Fig. 12. The number of 

dipole antenna elements M  was 4. The experiment date was 26th December, 2013. 
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FIGURE 14. The 3-D estimation results from field experiments. The blue circles represent the estimated 

reflection points. Experiment A. 
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(a) Projection on x-y plane 

 
(b) Projection on x-z plane 

 
(c) Projection on y-z plane 

 

FIGURE 15. Projection of the 3-D estimation results in Fig. 14 on each plane (Experiment A). 
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