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Solid-state detector for use in X-ray energy 
spectroscopy

High-purity Si pin diode and High-purity Ge pin diode

High reverse bias is required to form a wide depletion 
region in the diode.

X-rays should be absorbed in a depletion region in the diode.

In order to reduce the reverse current to < 1 nA, 
these diodes should be cooled down.

The reverse current in X-ray diodes should be lower than 1 nA.
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Portable X-ray detector operating at room temperature

Highly resistive HgI2 and CdTe have been investigated.

Traps  in depletion region in diodes
Degradation of performance of X-ray detector

It is necessary to investigate traps in 
highly resistive semiconductors
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Methods for determining densities and 
energy levels of traps

1. Transient capacitance methods
A. Deep Level Transient Spectroscopy (DLTS)
B. Isothermal Capacitance Transient Spectroscopy (ICTS)

In low-resistivity semiconductors
Capacitance determined by the 
depletion region in the diode can 
be measured.

DLTS and ICTS are applicable to 
characterization of traps.

Depletion region

Thickness of diode
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Semi-insulating semiconductor

Measured capacitance is a capacitance 
determined by the thickness of the diode, 
not by the depletion region in the 
junction.

DLTS and ICTS are not applicable. 

Transient current due to emission of charged 
carriers from traps can be used for determining 
densities and emission rates of traps in semi-
insulating semiconductors.

Depletion region

Thickness of diode
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Transient current methods
Thermally stimulated current (TSC)

Current due to emission of charged carriers from traps is 
measured, as temperature increases from low temperature.
Problems:

1.  Case of existing traps with close emission rates
2.  Effect of pyroelectric current
3.  Temperature-dependent leakage current

Isothermal measurement is suitable.

Discharge Current Transient Spectroscopy (DCTS)
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Transient reverse current IR(t)

1. Transient current                   : ITR(t)
2. Steady-state reverse current : ISR
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Total charge of trapped carriers in diode

Transient current

Nti : i-th trap density per unit area
eti :   i-th trap emission rate
S  :   Junction area
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Definition of DCTS signal

( ) [ ] ( )1exp)(, refSRRref +−−≡ teItI
qS
tetD

eref : peak-shift parameter

Theoretically derived DCTS signal 

( ) ( )

( )[ ]∑ ++−=

+−=

i
iii teeteN

tetI
qS
tetD

1exp

1exp)(,

refttt

refTRref



Osaka ElectroOsaka Electro--Communication UniversityCommunication University

Matsuura LaboratoryMatsuura Laboratory

)exp( xxy −=

x

y

1

1/e

)exp( btAbty −=

t

y

1/b

A/e

Maximum at 1=x Maximum at 1=bt



Osaka ElectroOsaka Electro--Communication UniversityCommunication University

Matsuura LaboratoryMatsuura Laboratory

Peak of DCTS signal
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Samples

High-purity semi-insulating 4H-SiC

4H-SiC

Ni

Ni

0.37 mm

Radius of 1.25 mm

HgI2

C

C

0.53 mm

3x2.5 mm2

Semi-insulating HgI2
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γ-ray spectrum from 241Am
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High-purity semi-insulating 4H-SiC

Transient reverse current
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High-purity semi-insulating 4H-SiC

DCTS signal with eref=0 eV
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High-purity semi-insulating 4H-SiC

DCTS signal 
with eref=-0.03 eV
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High-purity semi-insulating 4H-SiC
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Semi-insulating HgI2

Transient reverse current
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Semi-insulating HgI2

DCTS signal with eref=0 eV
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Semi-insulating HgI2

DCTS signal 
with eref=-0.02 eV
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Semi-insulating HgI2
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Summary

1. DCTS based on the transient reverse current in a diode was 
applied to determining the densities and emission rates of 
traps in semi-insulating 4H-SiC and HgI2.

2. DCTS could distinguish between trap species even with 
discrete close emission rates.
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