also shown in Fig. 3.9, which is deviated from the straight line. This apparent invalidity of Eq. (3-11) simply originates from a thinner undoped a-Si:H layer (0.8  $\mu$  m thick). The depletion layer spreads over the whole a-Si:H (i.e.,  $W_2$ =L) when the reverse bias voltage exceeds some critical value, resulting in an upward break of the characteristic curve because much more fraction of reverse bias voltage is supported in p c-Si than that expected from Eq. (3-9). On other words, the slope of the  $W_1^2-V$ characteristics changes from  $2 \varepsilon_{s1} \varepsilon_{s2} N_{I}/qN_{A}(N_{A} \varepsilon_{s1}+N_{I} \varepsilon_{s2})$  to  $2\,\epsilon_{\rm S1}/{\rm qN_A}$  as the reverse bias voltage increases from the critical value to higher reverse bias. Using the value of  $N_{
m I}$  obtained from sample 7, the critical bias voltage, at which  $\mathbf{W}_2$  reaches to L (0.8  $\mu$  m) for sample 3, was calculated as around -2 V, being in good agreement with the data in the figure.

The dependence of  $N_{T}$  on the p c-Si resistivity is studied. undoped a-Si:H films of samples 5-8 were deposited simultaneously on four different p c-Si substrates. capacitances of samples 5 and 6 (lower resistivities of p  $\,$  c-Si) were independent of the applied voltage, resulting from the formation of the wide depletion region only in the side of a-Si:H because  $N_{A}$  is much larger than  $N_{I}$ . On the other hand, the value of  $\,\mathrm{N}_{\mathrm{I}}$  obtained from sample 7 with the p c-Si resistivity of  $\,\mathrm{1-2}$  $\Omega$  cm coincided with that of sample 8 with the resistivity of 5-10 And also the undoped a-Si:H films of samples 9 and 10 were deposited simultaneously by the inductively-coupled discharge on two different p c-Si substrates. Both of Ντ were quite similar, as shown in Table 3-1.

From the studies of the thickness- and resistivity-dependencies, the steady-state HMC method is considered to be reasonable for the present heterojunctions. From the resistivity-dependence, one had better select p c-Si with  $N_{\mbox{\scriptsize A}}$  which is close to the value of  $N_{\mbox{\scriptsize I}}$ , indicating that several p c-Si substrates should be used in order to estimate  $N_{\mbox{\scriptsize I}}$  in the case that  $N_{\mbox{\scriptsize I}}$  is unknown at all.

3-2-3. Band discontinuity between a-Si:H and c-Si
Knowing band discontinuities at amorphous/crystalline

semiconductor heterojunctions is important in order to describe their electric properties as well as to design a heterojunction-bipolar transistor (HBT) with a wide-bandgap emitter. As is clear from the energy-band diagram shown in Fig. 3.6, the energy difference between the conduction band in a-Si:H and the Fermi level at the interface is expressed as  $qV_{B2}+\delta_2$  in the a-Si:H side and  $\Delta \, E_C - qV_{B1} + E_{g1} - \delta_1$  in the c-Si side. Therefore,  $\Delta \, E_C$  is expressed by

$$\Delta E_{C} = \delta_{1} + \delta_{2} - E_{g1} + qV_{B}$$
 (3-12)

On the other hand,  $\Delta E_C$  is defined as

$$\Delta E_{C} = \chi_{1} - \chi_{2} . \qquad (3-13)$$

Experimentally, the value of  $\delta_1$  is estimated from  $N_A$  as shown in Table 3-1 and the value of  $\delta_2$  is the same as the activation energy of dark conductivity of a-Si:H. By substituting quantitative data on  $\delta_1$ ,  $\delta_2$ ,  $\chi_1$ ,  $E_{g1}$ , and  $V_B$  to Eqs. (3-12) and (3-13), the values of  $\Delta E_C$  and  $\chi_2$  are determined as

$$\Delta E_{C}$$
 = 0.20  $\pm$  0.07 eV

and

$$\chi_2 = 3.85 \pm 0.07 \text{ eV}$$

using  $E_{g1}$ =1.12 eV and  $\chi_1$ =4.05 eV.<sup>9)</sup> Figure 3.10 shows the energy-band diagrams for the diodes (samples 5-8) with four different p c-Si resistivities, sketched on the basis of the above results.

## 3-3. Simulation of High-frequency C-V Characteristics

## 3-3-1. Modeling

Though only the undoped (i.e., slightly n-type) a-Si:H/p c-

## CHAPTER III C-V CHARACTERISTICS



Fig.3.10. Energy-band diagrams in interface regions for heterojunctions using p c-Si with different resistivities. Resistivities of p c-Si are (a)  $0.005-0.01~\Omega$  cm, (b)  $0.1-0.15~\Omega$  cm, (c)  $1-2~\Omega$  cm, and (d)  $5-10~\Omega$  cm.



Fig.3.11. Schematic sketches of p c-Si/undoped a-Si heterojunction: (a) energy-band diagram, (b) energy variation for electron, and (c) space-charge density variation for dc reverse-bias voltage condition. Gap states indicated by hatched area of (a) are occupied by electrons.