CHAPTER IV I-V CHARACTERISTICS

CHAPTER IV CURRENT-VOLTAGE CHARACTERISTICS OF UNDOPED a-Si:H/p c-Si HETEROJUNCTIONS

4-1. Introduction

There are very few reports concerning amorphous/crystalline semiconductor heterojunctions after the first report of Grigorovici et al. 1) on amorphous germanium (a-Ge)/crystalline germanium (c-Ge) heterojunctions. Those a-Ge films had such a lot of gap states that p-n control in the films could not be made. According to Stourac, 2) for the case of chalcogenide materials as an amorphous material, the current-transport mechanism was based on space-charge-limited currents (SCLC) in the chalcogenide materials. Concerning hydrogenated amorphous silicon (a-Si:H)/crystalline semiconductor heterojunctions, almost no data had been published before this study started, where a-Si:H has been attractive for device applications because p-n control in a-Si:H has succeeded. 3)

This chapter presents a systematic study of undoped (i.e., slightly n-type) a-Si:H/p-type crystalline silicon (p c-Si) heterojunctions for the first time. The purpose in this chapter is to elucidate the current-transport mechanism of those heterojunctions.

4-2. I-V Characteristics

Figure 4.1 shows the typical I-V characteristics in (a) log-log and (b) semilog presentations for an undoped a-Si:H/p c-Si heterojunction with an acceptor density (N_A) in p c-Si of 1.0×10^{16} cm⁻³. Two sorts of current-transport mechanisms have been proposed to explain these I-V characteristics;

- (1) a bulk-limited (space-charge-limited) current-transport mechanism, 4)
- (2) a junction-limited current-transport mechanism.⁵⁾
 The essential difference between (1) and (2) is whether the

CHAPTER IV I-V CHARACTERISTICS

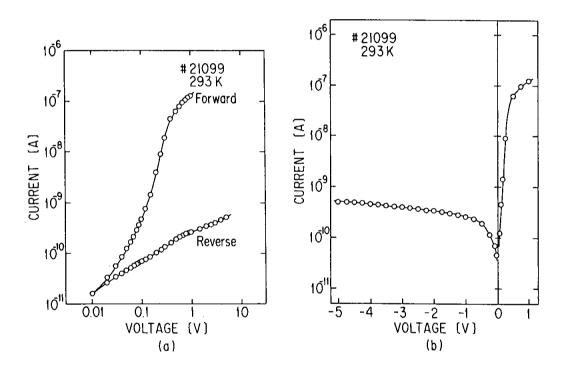


Fig.4.1. I-V characteristics of undoped a-Si:H/p c-Si (NA=1.0x10 16 cm $^{-3}$) heterojunction; (a) log I-log V plots and (b) log I-V plots.

CHAPTER IV I-V CHARACTERISTICS

resistance of the depletion region is higher or lower than the resistance of the amorphous film. On other words, in the bulklimited case the applied bias drop is mainly across the whole amorphous layer, while in the junction-limited case the applied drop is across the depletion regions. Because resistivity and thickness of the a-Si:H film were about 109 and 1.2 μ m, respectively, the expected current in the bulklimited case should be equal to or larger than 3.3×10^{-9} A at 0.05 V for an electrode area of 0.785 mm^2 . The current at voltages lower than 0.05 V seems to be Ohmic in nature, as pointed out, 4) because the value of I seems to be proportional to V in this voltage region. The observed current, however, is much smaller than $3.3x10^{-9}$ A. Judging from the magnitude of the current, the current for $V \le 0.4~V$ (close to the built-in potential, $V_{\rm R}$) is thought to be limited by the a-Si:H/c-Si heterojunction. The voltage dependence of the junction-limited current can generally be expressed by

$$I = I_0[exp(AV) - 1]$$
 , (4-1)

where A is voltage-independent and I_0 is the prefacter independent of the voltage. The forward current seems to be proportional to V in the voltage range lower than 0.05 V because $\exp(AV)$ can be approximately expanded in Talyor's series of 1+AV. Therefore, the I-V characteristics should be discussed on the basis of the junction-limited current-transport mechanism in the voltage region. There is another evidence that the current flowing through this heterojunction is not an SCLC. According to the SCLC model, 6) the relationship between I/L and V/L² should be independent of the thickness (L) of the a-Si:H film. However, I/L-V/L² characteristics in this study strongly depended on the thickness, indicating that the SCLC model cannot apply to this heterojunction.

4-3. Forward I-V Characteristics