CHAPTER VI CHANGES OF MIDGAP STATES

produced by a spatially intimated coupling of pairs between dangling bonds and positively ionized impurities.

6-5. Summary

- (1) The steady-state and transient HMC methods have been applied to determining densities and profiles of midgap states in undoped a-Si_{1-x}Ge_x:H, undoped a-Si:H and undoped a-Si_{1-x}C_x:H. The midgap states are correlated with D⁰; the density in a-Si_{1-x}Ge_x:H (E₀ \leq 1.63 eV) represents the D⁰ density of Ge, and in a-Si:H and a-Si_{1-x}C_x:H (E₀ \leq 1.88 eV) it represents the D⁰ density of Si. The density of midgap states increases slowly with the Ge content in the film, while it increases rapidly with the C content. The peak of the midgap-state profile appears clearly in a-Si:H and a-Si_{1-x}Ge_x:H, but it does not appear clearly in a-Si_{1-x}C_x:H.
- (2) Thermal annealing kinetics of metastable gap states in short-time light-soaked a-Si:H have been kinetics Monomolecular are suitable for explaining experimental data. The thermal activation energy annealing decreases monotonously with an increase in (E_C-E) . This is the first report which elucidates the relation between Ea and (E_C-E) .
- (3) The midgap states having a small ν_n are created both optically and thermally, while the midgap states having a large ν_n are created only by light soaking. Both states are located around 0.85 eV below the conduction band edge.