LIST OF SYMBOLS

Symbol	Unit	Description
α	1/cm	Optical absorption coefficient
α 1	1/cm	Optical absorption coefficient at 1.0 eV obtained from CPM
С	pF/cm ²	Capacitance of heterojunction
C ₂	pF/cm ²	Saturated capacitance at higher forward biases
$\mathbf{c}_{\mathbf{sw}}$	cm ³ /s	Constant of the Staebler-Wronski effect
γ _a	cm ³ /s	Pre-exponential factor of bimolecular decay rate
dV/dt	V/s	Voltage sweep rate
D(E,t)		Function which takes a maximum at $e_n(E)t=1$
$\mathtt{d}_{\mathbf{S}}$	cm	Thickness of interface layer
δ_{1}	eV	E_{F} - E_{V} in p c-Si
δ_2	eV	E_{C} - E_{F} in a-Si:H
$\mathtt{E}_{\mathbf{a}}$	eV	Activation energy of thermal annealing
Δ E $_{\mathbf{af}}$	eV	Activation energy of a pre-exponential
		factor (I_0) for forward currents
E_{BT}	eV	Characteristic energy for conduction-band
		tail
${\mathtt E}_{\mathbf F}$	eV	Fermi level
$\mathrm{E}^{\mathbf{a}}_{\mathrm{F}}$	eV	Fermi level in a neutral region of a-Si:H
$E_{\mathbf{F}\mathbf{n}}$	eV	Quasi-Fermi level of electron in the depletion region
${ t E_{ t Fp}}$	eV	Quasi-Fermi level of holes in the depletion region
$^{ m E}{ m {f g}}{ m 1}$	eV	Energy bandgap of c-Si
$E_{\mathbf{g2}}^{c}$	eV	Energy bandgap of a-Si:H
E ₀	eV	Optical gap determined by Tauc plot
E_{OB}	eV	Energy level at which a thermal emission
		rate for electrons equals to one for holes
${ t E_{ extbf{OB}}}^{ extbf{a}}$	eV	E _{OB} in a neutral region of a-Si:H
$E_{\mathbf{p}}$	eV	Energy level of a peak value of g(E)
E _{p1}	eV	Energy level of a peak value of g(E) with

		a small ν n
E_{p2}	eV	Energy level of a peak value of g(E) with
_		a large ν n
$\mathbf{E_{T}}$	eV	Energy level of the gap state where a
		tunneling hole combines with an electron or
		emits into the valence band in a-Si:H
$E_{\mathbf{w}}$	eV	Half width of Gaussian distribution
E_{rI}	V/cm	Electric field at x=WOB
$\mathbf{E}_{\mathbf{m}}$	eV	Energy at which D(E,t) takes a maximum value
$E_{\mathbf{C}}$	eV	Conduction-band edge
ΔE _C	eV	Conduction-band discontinuity
E_{V}	eV	Valence-band edge
Δ E $_{ m V}$	eV	Valence-band discontinuity
ΔΕν	eV	Activation energy for ν _n
e _n (E)	1/s	Thermal emission rate of electrons
e _p (E)	1/s	Thermal emission rate of holes
ε 0	pF/cm	Free space permittivity
ε s1	pF/cm	Semiconductor permittivity for c-Si
ε s2	pF/cm	Semiconductor permittivity for a-Si:H
F _∞ (E)		Occupation function at $t=\infty$ s
f(E)		Occupation function at t=0 s (i.e., Fermi-
		Dirac distribution function)
G	1/cm ³ s	Carrier generation rate by light exposure
g(E)	1/cm ³ eV	Density-of-state distribution in a-Si:H
g(E,0)	1/cm ³ eV	Midgap-state profile in light-soaked film
g ₀ (E)	1/cm ³ eV	Midgap-state profile in as-deposited film
g(E,t)	1/cm ³ eV	Midgap-state profile at thermal annealing
		time t
$\Delta g(E,t)$	1/cm ³ eV	$g(E,t)-g_0(E)$ at thermal annealing time t
g _{max}	1/cm ³ eV	Maximum value of $g(E)$ with Gaussian
		distribution
H(t)	$1/cm^3$	Transient HMC (heterojunction-monitored
		capacitance) signal
$\mathbf{h}\cdot \mathbf{\nu}$	eV	Photon energy
I	Α	Current
k	eV/K	Boltzmann constant
L	cm	Thickness of a-Si:H

$^{\mu}$ 2	cm²/Vs	Mobility in a-Si:H
$\mu_{\mathbf{n}}$	cm ² /Vs	Mobility of electrons
$\mu_{\mathbf{p}}$	cm²/Vs	Mobility of holes
ν a	1/s	Pre-exponential factor of monomolecular decay rate
ν n	1/s	Pre-exponential factor of thermal emission
**		rate (attempt-to-escape frequency) for
		electrons
ν n0	$1/sK^2$	Pre-exponential factor of ν n with
		temperature dependence
ν n1	1/s	Small attempt-to-escape frequency for
		electrons
ν n2	1/s	Large attempt-to-escape frequency for
		electrons
ν p	1/s	Pre-exponential factor of thermal emission
		rate (attempt-to-escape frequency) for
	9	holes
$N_{\mathbf{A}}$	$1/\mathrm{cm}^3$	Density of acceptors in p c-Si
$N_{\mathbf{C}}$	$1/\mathrm{cm}^3$	Effective density of states in the
	2	conduction band
$N(E_C)$	1/cm ³ eV	Density-of-state distribution at a bottom
	9	of the conduction band
$N_{\mathbf{I}}$	$1/\mathrm{cm}^3$	Midgap-state density (i.e., space-charge
		density) graphically estimated from the
	2	steady-state HMC method
$N_{\mathbf{I}}^{\bullet}$	$1/\mathrm{cm}^3$	Density of midgap states between E_{F} and E_{OB}
	3	in a-Si:H
N _I (t)	1/cm ³	Midgap-state density (space-charge density) at time t
$\Delta N_{I}(t)$	1/cm ³	Change in space-charge density at time t
$N_{T}(\infty)$	1/cm ³	Space-charge density at $t=\infty$ s
N _s	1/cm ³	Bulk spin density obtained from electron
-		spin resonance (ESR) measurements
N _s (t)	$1/\mathrm{cm}^3$	Bulk spin density from ESR at light-soaking
S		time t
N _s *	1/cm ³	Density of defects between p c-Si and a-Si:H
~		in plate of interface layer (i.e.,

		interface and the near-interface regions)
$N_{\mathbf{V}}$	1/cm ³	Effective density of states in the valence
·		band
N_1	1/cm ³	Density of first states
$^{-}$	1/cm ³	Density of second states
n	1/cm ³	Electron density in the conduction band of
		a-Si:H
$n_{ m BT}$	1/cm ³	Electron density in conduction-band tail
n _i	1/cm ³	Intrinsic carrier density in a-Si:H
n _T (E)	$1/\mathrm{cm}^3$	Density of traps occupied by electrons
n _T (E;t)	$1/\mathrm{cm}^3$	Density of traps occupied by electrons at
1		time t
Δn	$1/\mathrm{cm}^3$	Electron density under light exposure
p	$1/\mathrm{cm}^3$	Hole density in the valence band of a-Si:H
p _T (E)	$1/\mathrm{cm}^3$	Density of traps occupied by holes (i.e.,
		density of empty traps)
Δр	1/cm ³	Hole density under light exposure
Q_{rI}	C/cm ²	Space charge in region I $(W_{OB} \le x \le W_2)$ in a-
11		Si:H
Q_{SS}	C/cm ²	Space charge in interface layer
ρ_{I}	C/cm ³	Space-charge density in region I
$^{ ho}$ 2	Ω cm	Dark resistivity of a-Si:H
q	С	Magnitude of electronic charge
σ_2	S/cm	Dark conductivity of a-Si:H
$^{\sigma}$ n	cm^2	Capture-cross section of electrons
σ n1	cm ²	Small capture-cross section of electrons
σ n2	cm ²	Large capture-cross section of electrons
$\sigma_{\mathbf{p}}$	cm ²	Capture-cross section of holes
Δσ _p	S/cm	Increment of conductivity using a small
·		incident light flux with a 2-eV photon energy
Δσ _{ph}	S/cm	Photoconductivity with AM1 light
S pn	cm ²	Electrode area
T	K	Measuring absolute temperature
${ m T_{fr}}$	°C (or K)	Freeze-in temperature
T _{RC}	°C (or K)	Temperature from which a film is rapidly
- KC	2 (22)	cooled by liquid N ₂

${ m T}_{{ m room}}$	°C (or K)	Room temperature
$T_{\mathbf{S}}$	°C (or K)	Substrate temperature during deposition
t_{IL}	s	Illumination time
^τ f	s	Filling time
u(x)	eV	Energy at position x
u_{OB}	eV	Energy at x=W _{OB}
φ _m	eV	Work function of metal
φ _S	eV	Work function of a-Si:H
v	v	Applied bias voltage $(V=V_1+V_2)$
v_B	v	Built-in potential graphically estimated
_	•	from steady-state HMC method
v_{B1}	V	Built-in potential at heterojunction for c-Si
v_{B2}	v	Built-in potential at heterojunction for a-Si:H
v_{B}^{*}	v	Built-in potential at heterojunction
v_R	v	Reverse bias voltage under transient HMC
77	v	measurement
v ₁		dc applied-bias voltage for c-Si
v ₁ (t)	V	Voltage at time t across the depletion region in c-Si
v_2	v	dc applied-bias voltage for a-Si:H
${ m v}_{ m th}$	cm/s	Thermal velocity of electrons
χ ₁	eV	Electron affinity of c-Si
x 2	eV	Electron affinity of a-Si:H
$\chi (S10_2)$	eV	Electron affinity of SiO ₂
w ₁	cm	Width of the depletion region in c-Si
w_2	cm	Width of the depletion region in a-Si:H
$W_1(t)$	cm	Depletion width in c-Si at time t
W ₂ (t)	cm	Depletion width in a-Si:H at time t
W _{OB}	cm	Cross point at $E_{Fn}=E_{OB}$ in a-Si:H