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Our focus

Problem in heavily doped p-type wide 
bandgap semiconductors

The acceptor density, which is determined by 
the curve-fitting procedure using the temperature 
dependence of the hole concentration, is always
much higher than the doping density.

Why?



Acceptor density in heavily Mg-doped GaN

1000/T  [K-1]

H
ol

e 
C

on
ce

nt
ra

tio
n 

 [c
m

-3
]

Heavily Mg-doped GaN
: Experimental p(T)
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1. Hall-effect measurement
Fermi-Dirac (FD) 
distribution function

Results determined by curve-fitting

Concentration of Mg in GaN: 319 cm102 −×

meV154A =∆E

2. SIMS

Is the FD distribution function available 
for Mg acceptors in GaN?
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1. In order to determine the densities and energy levels 
of impurities from the temperature dependence of the 
majority-carrier concentration without any 
assumptions regarding the impurities.

graphical peak analysis method
Free carrier concentration spectroscopy 
(FCCS)



Free Carrier Concentration Spectroscopy
(FCCS)

Using an experimental n(T), the FCCS signal is defined as
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This FCCS has peaks corresponding to donor levels

From each peak temperature and value,

refpeakD EkTE ,i,i +≅∆
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Undoped 3C-SiC
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The temperature dependence of the electron concentration
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Free Windows Application software: Free Windows Application software: 
See at Web site  http://www.osakac.ac.jSee at Web site  http://www.osakac.ac.jp/labs/matsuurap/labs/matsuura//



The  FCCS signal is theoretically written as
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FCCS signal , in which the influence of the previously 
determined donor species is removed, is  expressed as
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The n(T) simulation is in agreement with the experimental n(T).

The values determined by FCCS are reliable.



2. In order to investigate a distribution function 
suitable for deep acceptors in heavily doped 
semiconductors

A distribution function including the 
influence of excited states of acceptors



p-type wide bandgap semiconductors (GaN, SiC, diamond)
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1.Their dielectric constants are lower than that of Si
2.Their hole effective masses are heavier than their 

electron effective masses

Acceptor level and
excited state levels

Semiconductor Acceptor level 
(r=1)

1st excited state 
level (r=2)

SiC 146 meV 37 meV

GaN 101 meV 25 meV

The acceptor levels become deep, and also the excited 
state levels are still close to acceptor levels in Si.



Position of Fermi level in heavily doped p-type case

Temperature   [K]

∆E
F(

T)
   

 [m
eV

]

: Heavily Al-doped 6H-SiC
: Lightly Al-doped 6H-SiC

EV

EA

EF(T)∆EA ∆EF(T)

Acceptor levels

100 200 300 400
0

100

200

300

400
Heavily doped case

Acceptor level

Fermi level

1st excited state

2nd excited state

Valence band

Since the Fermi level is close to the excited state levels, 
a lot of holes exist at the excited states.

The excited states should affect p(T)!



A distribution function suitable for deep acceptors
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1. Fermi-Dirac distribution function not including the 
influence of excited states of acceptors

2. The distribution function including the influence of 
excites states of acceptors
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The difference between two functions is only
the acceptor degeneracy factor, gA and gA(T).



Acceptor degeneracy factor
In fFD(ΔEA)

4A =g
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Degeneracy factors of excited states

Excited state levels



Heavily Al-doped 6H-SiC

1000/T  [K-1]

H
ol

e 
C

on
ce

nt
ra

tio
n 

 [c
m

-3
]

Heavily Al-doped 6H-SiC
: Experimental p(T)
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From this peak,
NA=2.5×1019 cm-3 and ΔEA=180 meV for fFD(ΔEA)
NA=3.2×1018 cm-3 and ΔEA=180 meV for f (ΔEA)

Since the Al-doping density is 4×1018 cm-3,
the influence of excited states on p(T) should be considered.

Peak



Comparison between Heavily and lightly Al-doped 6H-SiC

Heavily doped Lightly doped
f(ΔEA) fFD(ΔEA) f(ΔEA) fFD(ΔEA)

NA [cm-3] 3.2x1018 2.5x1019 4.1x1015 4.9x1015

ΔEA [meV] 180 180 212 199
Doping 
density [cm-3]

4.2x1018 ~6x1015

In lightly doped case, holes at the excited states are few because the 
Fermi level is far from EV.

Using each distribution function, the reasonable acceptor density is 
obtained.
Only in heavily doped samples, 
fFD(ΔEA) cannot be used to analyze p(T).
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Heavily Mg-doped GaN

1000/T  [K-1]

H
ol

e 
C

on
ce

nt
ra

tio
n 

 [c
m

-3
]

Heavily Mg-doped GaN
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From this peak,
NA=2.1×1020 cm-3 and ΔEA=154 meV for fFD(ΔEA)
NA=8.9×1018 cm-3 and ΔEA=149 meV for f (ΔEA)

Since the Mg-doping density is 2×1019 cm-3, 
f(ΔEA) is suitable for heavily doped GaN.

Peak



3. How do the excited states of acceptors 
influence p(T)?

Do the excited states enhance the ionization 
efficiency of acceptors, or not?



Temperature dependence of acceptor degeneracy factor
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gA(T) is less than gA of 4 at high temperatures, which 
enhances the ionization efficiency at high temperatures.



Ionized acceptor density in Mg-doped GaN
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Since gA(T) is less than gA at high temperatures, the 
ionized acceptor density for f(ΔEA) is higher than that for 
fFD(ΔEA) .



Summary

• The distribution function suitable for deep 
acceptors has been proposed and tested.

• This distribution function is necessary for 
determining NA in heavily doped p-type wide 
bandgap semiconductors.

• The excited states of acceptors enhance the 
ionization efficiency of acceptors at high 
temperatures.
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