Influence of Excited States of Mg Acceptor on Hole Concentration in GaN

H. Matsuura, D. Katsuya, T. Ishida, S. Kagamihara, K. Aso, H. Iwata, T. Aki, S-W. Kim,¹⁾ T. Shibata¹⁾

```
and T. Suzuki<sup>1)</sup>
```

Department of Electronic Engineering and Computer Science, Osaka Electro-Communication University,

Hatsu-cho 18-8, Neyagawa, Osaka 572-8530, Japan

matsuura@isc.osakac.ac.jp

1) Nippon Institute of Technology

Experimental acceptor levels (ΔE_A) in GaN, measured from the valence band maximum (E_V), are reported to be deeper than 150 meV [1]. Theoretically, the ground and first excited state levels of acceptors in GaN, calculated by hydrogenic dopant model [$\Delta E_r = 13.6(m^* / \varepsilon_s^2 r^2)$ eV], are 101 meV and 25 meV, respectively. The experimental ΔE_A corresponds to ΔE_1 , while it is deeper than ΔE_1 due to central cell corrections. Since the Fermi level (ΔE_F) is between E_V and ΔE_A , the excited states ($r \ge 2$) should affect the hole concentration p(T). Here, all the energy levels are measured from E_V . Using both of the Fermi-Dirac distribution function $f_{FD}(\Delta E_A)$ and the proposed distribution function $f(\Delta E_A)$ including the influence of the excited states, we experimentally investigate the influence of the excited states on p(T).

The proposed distribution function for electrons is expressed as [2]

$$f(\Delta E_{\rm A}) = \frac{1}{1 + 4\exp\left(-\frac{\overline{E_{\rm ex}}}{kT}\right) \cdot \left\{\exp\left(\frac{\Delta E_{\rm A} - \Delta E_{\rm F}}{kT}\right) + \sum_{r=2} g_r \exp\left(\frac{\Delta E_r - \Delta E_{\rm F}}{kT}\right)\right\}},\tag{1}$$

where g_r is the (r-1)th excited state degeneracy factor and E_{ex} is the ensemble average of the ground and excited state levels, which increases from 0 with T. Here, the average acceptor level ΔE_{Δ} is expressed as $\Delta E_A = \Delta E_A - E_{ex}$. When the influence of the excited states is ignored (i.e., r = 1 and $E_{ex} = 0$), Eq. (1) corresponds to $f_{FD}(\Delta E_A)$.

2 µm-thick Mg-doped p-type GaN epilayers were grown at 1025 °C by metalorganic chemical vapor deposition on undoped GaN/sapphire, and they were annealed at 800 °C for 20 min. The Mg concentration ($C_{\rm Mg}$) in the epilayers, determined by secondary ion mass spectroscopy, was 2×10^{19} cm⁻³. p(T) was obtained by Hall-effect measurements. Using Free Carrier Concentration Spectroscopy (FCCS) [2,3], $\Delta E_{\rm A}$, the acceptor density ($N_{\rm A}$) and the compensating density ($N_{\rm comp}$) were determined, and are shown in Table 1. Figure 1 shows the experimental and simulated p(T).

Since Mg atoms at Ga sites act as acceptors, N_A should be lower than or equal to C_{Mg} . In $f_{FD}(\Delta E_A)$, although the simulated p(T), shown by the broken line, is in agreement with the experimental p(T), N_A is much higher than C_{Mg} , indicating that this N_A is not reliable. In $f(\Delta E_A)$, on the other hand, the simulated p(T), shown by the solid line, is in agreement with the

experimental p(T), and also $N_{\rm A}$ is lower than $C_{\rm Mg}$. Therefore, $N_{\rm A}$ and $\Delta E_{\rm A}$ obtained using $f(\Delta E_{\rm A})$ are considered to be reasonable.

- D. J. Kim, D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee and J. H. Lee: J. Appl. Phys. 88 (2000) 2564.
- [2] H. Matsuura: New J. Phys. **4** (2002) 12.1. (http://www.njp.org/).
- [3] H. Matsuura, Y. Masuda, Y. Chen and S. Nishino: Jpn. J. Appl. Phys. **39** (2000) 5069.

Table 1 Results determined by FCCS.

	$N_{\rm A}$ [cm ⁻³]	$\Delta E_{\rm A} [{\rm meV}]$	$N_{\rm com}$ [cm ⁻³]
$f_{\rm FD}(\Delta E_{\rm A})$	2.1×10^{20}	154	2.2×10^{18}
$f(\Delta E_{\rm A})$	8.9×10^{18}	149	1.5×10^{17}

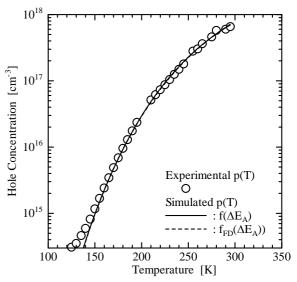


Fig. 1 Experimental and simulated p(T).