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An Improved Method for Determining Densities and Energy Levels of Dopants
and Traps by Means of Hall-Effect Measurement
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Using the temperature dependend ) of the majority-carrier concentration in a semiconductor, two graphical methods for
determining the densities and energy levels of dopants and traps are compared. In the analysis proposed previously, the function
to be evaluated is defined IXT, Err) = p(T) exp(Eret/kT)/KT, whereT is the temperaturek is the Boltzmann constant
andE, is the parameter. However, it is sometimes difficult, particularly in high-resistivity semiconductors, to determine these
values. This is why the function to be evaluated is introduced hete(@s Erer) = p(T)?exp(Erer/kT)/(kT)?%, and it is
determined thaH (T, E) is superior toS(T, Eqes).
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The temperature dependenpé€rl) of the majority-carrier exp<ﬂ>
concentration in a semiconductor reflects important informa- Fa(T) — KT 4
tion on dopants and traps. Although there are some methods M) = F—Ea\’ “)
for determining the densities and energy levels of dopants, it Oa + eXp<?>
is difficult to evaluate them accuratély®) Therefore, a new
method was proposed and tested experimentaiiy:”) where E¢ is the Fermi level Ey is the energy level at the

In this method35")the function to be evaluated is de-top of the valence band argh is the degeneracy factor of
fined by acceptors.

p(T) Eief The function
ST Bl = S ex'“( kT > ’ ) Na p[_ (Ea— Ev) - Eref} -

whereT is the temperature is the Boltzmann constant and kT KT ’

Eret is the parameterS(T, Ere) has its peak at a temperaturein eq. (3), has a peak value dia exp(—1) /K Tpeak at Tpeak =

corresponding to each dopant level or each trap level. ThysEx — Ev) — Erf]/k. Even when no peak appears in the

using each peak temperature and peak value, the correspoméasured temperature range wigh; = 0 eV, furthermore,

ing energy level and density can be accurately determined.the peak temperature &T, E,e) can be shifted to the mea-
This analysis was applied to p-type silicon (p-Si) irradiatedured temperature range by changlg;. To determine re-

with a low fluence & 1 x 10'*cm~2) of 10-MeV protons?)  liable values ofNs and E4 using the peak value and peak

and nitrogen (N)-doped 4H-SiZ,and then reliable values temperaturefa(T) should be less dependent on

were obtained in these low-resistivity semiconductors. Onthe To obtain a function less temperature dependent than

other hand, the method could not be applied to p-Siirradiaté€ (T), the function to be evaluated is defined by

with a high fluence¥ 1x 10 cm~2) of 10-MeV protons, be-

2
cause the resistivity of p-Si increased following high-fluence H(T, Ere) = ﬂls exp( Eref) ) (6)
irradiation. This is why an improved functiod (T, E) is (kT)> kT
proposed instead &(T, Eer). Substituting thep(T) in eq. (2) for one of thep(T) in eq. (6)

Let us consider one type of acceptor (acceptor dem¢ity and substituting
and acceptor leveE,) and one type of donor (donor density Er — Ey
Np) in a p-type semiconductor. From the charge neutrality P(T) = Ny(T) exp(— ?) , (7)
condition, p(T) is obtained as
for the otherp(T) in eq. (6),H (T, Er) gives
P(T) = Na fa(Ea) — Np,

Na (EA - EV) — Erer
where fa (E) is the Fermi-Dirac distribution function for ac- H(T. Bren) = kT exp[— KT ] la(T)
ceptors. ThusS(T, E,ef) is expressed as
° e N
S(T, Erer) = 1 xp| ——————— | Fa(T) kT kT ’
kT kT
where
Np Ere Nvo
TkT ex"(ﬁ) @) Ia(T) = = ©)
F— Ea
with Oa + EXP(T>
and Ny (T) is the effective density of states in the valence
band, which is given
*Web site: http://www.osakac.ac.jp/labs/matsuura/ Ny (T) = Nyok®T15, (10)
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Fig. 1. p(T) andEr — Ey simulated for (a) Case A and (b) Case B.  Fig. 3. S(T,0.315, Fa(T)/Fa(200, H(T,0.617 and Ia(T)/1a(200
for Case B.

4 10° 0 4 10°
E determined from the difference between the solid and bro-
T ' 8 1 ken lines inS(T, Ere) or H(T, Eref). Since this difference in
2 0t A 310 H (T, Ere is larger than that ir8(T, Eer), Np as well asNa
S SE 6f i g and E5 can be determined more reliably (T, Ers) than
“i wzf% 10'23 in S(T,_ Eref).
= E(i A E In Fig. 3, S(T, 0.315), Fa(T)/Fa(200, H(T,0.617 and
'5); * E r 1 - Ia(T)/1a(200) for Case B are shown. The solid line of
108 T 1100 S(T, 0.315 or H(T, 0.617) is calculated from eq. (1) or eq.
2 E (6). On the assumption thalpy = OcnT3, Na and Ea
] are determined using the peak temperature and the value in
40004 0 400104 the solid line of H(T,0.617). Using the obtained values
@) Temperature [K] () Temperature [K] (En — Ev = 0.64eV andNy = 6.7 x 108 cm™3), the bro-

ken line of S(T,0.315 or H(T,0.617 is simulated from
eg. (3) or eq. (8), and the dotted line B (T)/Fa(200) or
Ia(T)/1a(200) is simulated using eq. (4) or eq. (9).

Fig. 2. S(T,0), Fa(T)/Fa(200), H(T, 0) andia(T)/1(200) for Case A.

and Nyg is a constant. Since the numeratorlgfT) is con- As is clear from the figure]a(T) is independent ofT,
stant, Io(T) is considered to be less temperature dependewhile Fa(T) varies withT. The broken line ofS(T, 0.315)
thanFA(T). does not exhibit any peaks becaldsgT) decreases witft

To compare (T) with Fa(T) from the viewpoint of tem- too rapidly. As a resultEs, Na and Np cannot be deter-
perature dependence, two types of high-resistivity p-Si amined. On the other hand, since the broken linelgT, E,ef)
considered: (1) Case A witkEa — Ey = 0.19eV,Na = has a peakiza, Na andNp can be determined accurately.
5.0 x 10%cm2 andNp = 1.0 x 10%cm™3, and (2) Case  In summary, compared Witls(T, E.) proposed previ-
B with Eo — Ey = 0.64eV,Na = 6.6 x 10®¥cm™3 and ously, H(T, E) is more suitable for determining the den-
Np = 1.4 x 10*°cm3. Figure 1 show(T) andEg — Ey  sities and energy levels usimgT), sincela(T) included in
simulated using egs. (2) and (7) for both cases. H (T, Erer) is much less temperature dependent thaT )

Figure 2 showsS(T, 0), Fa(T)/Fa(200, H(T,0) and included inS(T, Eer).

Ia(T)/1a(200 for Case A. The solid line ofS(T,0) or

H (T, 0) is calculated from eq. (1) or eqg. (6). On the assump-

tion that N\p = Ocm 3, Na and Ex are determined using 1) H.Matsuura: Jpn. J. Appl. Phy36 (1997) 3541.

the peak temperature and the value in the solid line. Us?) S%ggtgg)“g%’; Uchida, T. Hisamatsu and S. Matsuda: Jpn. J. Appl. Phys.
ing the obtained valuesEl — ,EV = 0.19eV andNa T 3) H.Matsuura, T. Kimoto and H. Matsunami: Jpn. J. Appl. PB$L1999)

4.0 x 10"cm~3), the broken line ofS(T, 0) or H(T,0) is 4013,

simulated using eq. (3) or eq. (8), and the dotted line o#) H.J.Hoffmann: Appl. Physl9(1979) 307.

FA(T)/Ea(200 or 14(T) /14 (200 is simulated using ed. (4 5) H. Matsuura and K. Sonoi: Jpn. J. Appl. Ph$5,(1996) L555.
A )/9A( 0 or1a(T)/1a(200 g eq. (4) 6) H.Matsuura: Jpn. J. Appl. Phy&5 (1996) 5297.
oreq.(9). . 7) H. Matsuura: Jpn. J. Appl. Phy35 (1996) 5680.
The figure indicates thaiy (T) is less temperature depen- g) s. M. Sze:Physics of Semiconductor Devid@¥iley, New York, 1981)

dent thanFA(T). As is clear from eq. (3) or eq. (8N\p is 2nd ed., p. 18.



