Donor Densities and Donor Levels in SiC Uniquely Determined by a New Method Based on Hall-Effect Measurements

H. Matsuura, Y. Masuda,¹⁾ Y. Chen,¹⁾ T. Kimoto,²⁾ S. Nishino¹⁾ and H. Matsunami²⁾

Osaka Electro-Communication University 1) Kyoto Institute of Technology 2) Kyoto University

Background

Silicon carbide (SiC) has been regarded as a promising semiconductor for power electronic applications.

In order to use SiC wafers or epilayers to electronic devices, an accurate evaluation of densities and energy levels of dopants and defects in SiC is essential.

Aim

- 1. To determine **how many types** of impurities and defects are included in SiC
- 2. To determine **the densities and energy levels** of impurities and defects
- 3. To **verify** the obtained results

Experimental method

Hall-effect measurement

New evaluation method

Propose a function to be evaluated

$$H(T, E_{\text{ref}}) \equiv \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

Proposed function to be evaluated

$$H(T, E_{\text{ref}}) \equiv \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

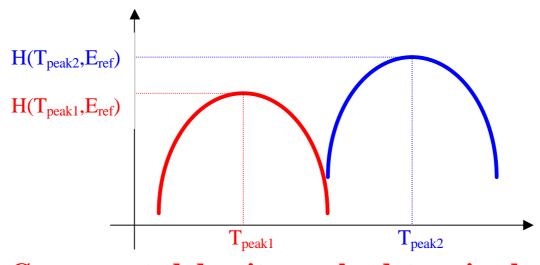
n(T): temperature dependence of majority carrier concentration

k: Boltzmann constant T: absolute temperature

 E_{ref} : parameter that can shift the peak temperature of $H(T, E_{\text{ref}})$

Good points of this function

- 1. $H(T, E_{ref})$ has a peak corresponding to each energy level of impurity or defect.
 - *i*-th peak temperature \longrightarrow energy level of *i*-th impurity or defect
 - *i*-th peak value \longrightarrow density of *i*-th impurity or defect



2. Compensated density can be determined.

Theoretical consideration

$$H(T, E_{\text{ref}}) \equiv \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

Consider n-type semiconductor

Substitute two different n(T) expressed as follows

for each n(T) in definition.

1. n(T) from charge neutrality condition

$$n(T) = \sum_{i=1}^{n} N_{\text{D}i} [1 - f(E_{\text{D}i})] \qquad \text{n types of donors}$$
$$- \sum_{i=1}^{m} N_{\text{TE}i} f(E_{\text{TE}i}) \qquad \text{m types of electron traps}$$
$$- N_{\text{A}} \qquad \text{acceptor}$$

2. n(T) from effective density of states

$$n(T) = N_{\rm C}(T) \exp\left(-\frac{E_{\rm C} - E_{\rm F}}{kT}\right)$$

 $E_{\mathbf{C}}$: energy level at the bottom of the conduction band

 $E_{\rm F}$: Fermi levelf(E): Fermi-Dirac distribution function $E_{{\rm D}i}$:i-th donor level $N_{{\rm D}i}$:i-th donor density $E_{{\rm TE}i}$:i-th electron trap level $N_{{\rm TE}i}$:i-th electron trap density $N_{\rm A}$:acceptor density $N_{\rm C}(T)$:effective density of states in the conduction band

$$H(T, E_{\text{ref}}) = \sum_{i=1}^{n} \frac{N_{\text{D}i}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{D}i}) - E_{\text{ref}}}{kT}\right] I(E_{\text{D}i})$$
$$+ \sum_{i=1}^{m} \frac{N_{\text{TE}i}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{TE}i}) - E_{\text{ref}}}{kT}\right] I(E_{\text{TE}i})$$
$$-\left(N_{\text{A}} + \sum_{i=1}^{m} N_{\text{TE}i}\right) \frac{N_{\text{C}0}}{kT} \exp\left[\frac{E_{\text{ref}} - (E_{\text{C}} - E_{\text{F}})}{kT}\right]$$

where

$$I(E) = \frac{N_{\rm C0}}{2 + \exp\left(\frac{E - E_{\rm F}}{kT}\right)}$$

and

$$N_{\rm C}(T) = (kT)^{1.5} N_{\rm C0}$$

Pay attention to the function

$$\frac{N_i}{kT} \exp\left(-\frac{(E_{\rm C}-E_i)-E_{\rm ref}}{kT}\right)$$

in the above equation.

Peculiar feature of

$$F(T, E_{\text{ref}}) \equiv \frac{N_i}{kT} \exp\left(-\frac{(E_{\text{C}} - E_i) - E_{\text{ref}}}{kT}\right)$$

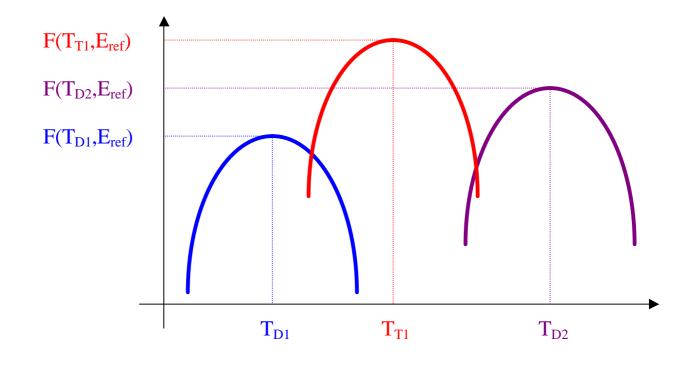
$$F(T, E_{ref})$$
 has a peak value of

$$\frac{N_i}{kT_{\text{peak}i}}\exp(-1)$$

at a peak temperature

$$T_{\text{peak}i} = \frac{(E_{\text{C}} - E_i) - E_{\text{ref}}}{k}$$

For example



 $E_{\rm C} - E_{\rm D1} = kT_{\rm D1} + E_{\rm ref} \quad N_{\rm D1} = F(T_{\rm D1}, E_{\rm ref})kT_{\rm D1} / \exp(-1)$ $E_{\rm C} - E_{\rm T1} = kT_{\rm T1} + E_{\rm ref} \quad N_{\rm T1} = F(T_{\rm T1}, E_{\rm ref})kT_{\rm T1} / \exp(-1)$ $E_{\rm C} - E_{\rm D2} = kT_{\rm D2} + E_{\rm ref} \quad N_{\rm D2} = F(T_{\rm D2}, E_{\rm ref})kT_{\rm D2} / \exp(-1)$

Good points of our analysis

1. Using
$$H(T, E_{\text{ref}}) \equiv \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right),$$

we can determine the density and energy level of the impurity or defect corresponding to each peak.

2. As is clear from
$$T_{\text{peak}i} = \frac{(E_{\text{C}} - E_i) - E_{\text{ref}}}{k}$$
,

a parameter E_{ref} can shift the peak of $H(T, E_{ref})$ to the measurement temperature range even when none of the peaks of H(T,0) appear within the measurement temperature range.

3. Although $T_{\text{peak}i}$ is a little different from

 $\frac{(E_{\rm C} - E_i) - E_{\rm ref}}{k}$ due to the temperature dependence of $I(E_i)$,

we can easily determine the accurate N_i and E_i from each peak temperature and peak value using a personal computer.

4. We can determine how many types of impurities and defects are included in the semiconductor from the number of peaks in $H(T, E_{ref})$.

Undoped 3C-SiC

Growth conditions

(Atmospheric pressure chemical vapor deposition)

- 1. (100) n-type Si substrate
- 2. Etching of Si substrate surface

1175 °C, 11 min., HCl: 63 sccm, H₂: 1.5 slm

3. Formation of buffer layer

(Carbonization of Si substrate surface)

- 1350 °C, 3 min., C_3H_8 : 1 sccm, H_2 : 1 slm
- 4. Growth of undoped 3C-SiC
 - 1350 °C, **Si₂(CH₃)₆**: 0.5 sccm, H₂: 2.5 slm

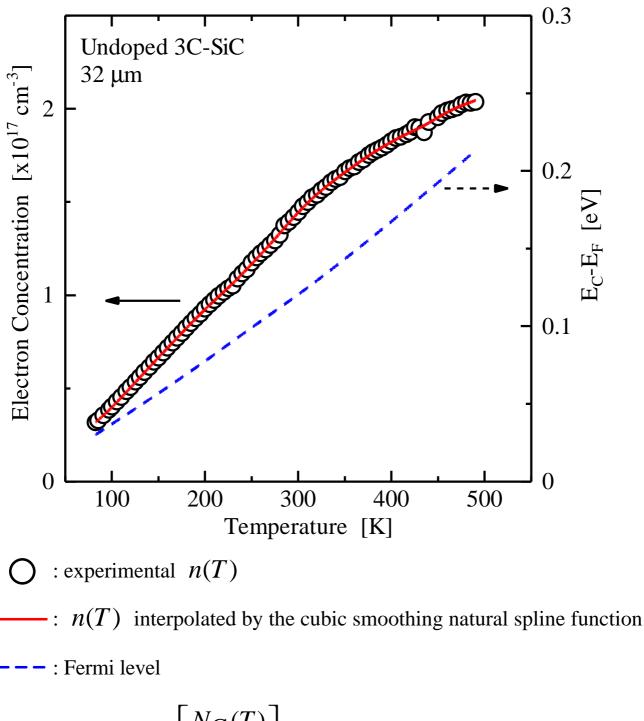
growth rate: 4.3 μ m/h

Conditions of Hall-effect measurement

Removal of Si substrate (chemical etching)

Thickness: 32 µ m Size: 5x5 mm² Magnetic field: 5 kG Temperature range: 85 K ~ 500 K

Electron concentration and Fermi level

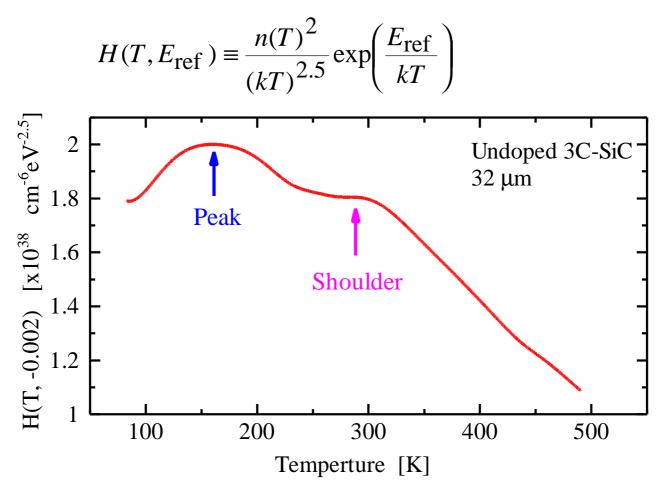


$$E_{\rm C} - E_{\rm F} = kT \ln \left[\frac{N_{\rm C}(T)}{n(T)} \right]$$

where

$$N_C(T) = 3.0 \times 10^{15} T^{3/2} \text{ cm}^{-3}$$

Function to be evaluated



One peak and one shoulder appear.

At least two kinds of energy levels are included.

Determination of the density N_{D2} and energy levels E_{D2}

of the donor corresponding to the lower peak $T_{\text{peak}} = 160 \text{ K}$ $H(T_{\text{peak}}, -0.002) = 2.0 \times 10^{38} \text{ cm}^{-6} \text{eV}^{-2.5}$ Around 160 K, n(T) is approximately expressed as $n(T) \cong (N_{\text{D1}} - N_{\text{A}}) + N_{\text{D2}} [1 - f(E_{\text{D2}})],$

 N_{D1} : density of the donor shallower than donor corresponding to

160 K when a shallower donor is included.

Therefore, $H(T, E_{ref})$ is approximately described as

$$H(T, E_{\text{ref}}) \approx \frac{N_{\text{D2}}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{D2}}) - E_{\text{ref}}}{kT}\right] I(E_{\text{D2}}) + \left(N_{\text{D1}} - N_{\text{A}}\right) \frac{N_{\text{C0}}}{kT} \exp\left[\frac{E_{\text{ref}} - (E_{\text{C}} - E_{\text{F}})}{kT}\right]$$

$$T_{\text{peak}} = 160 \text{ K}$$

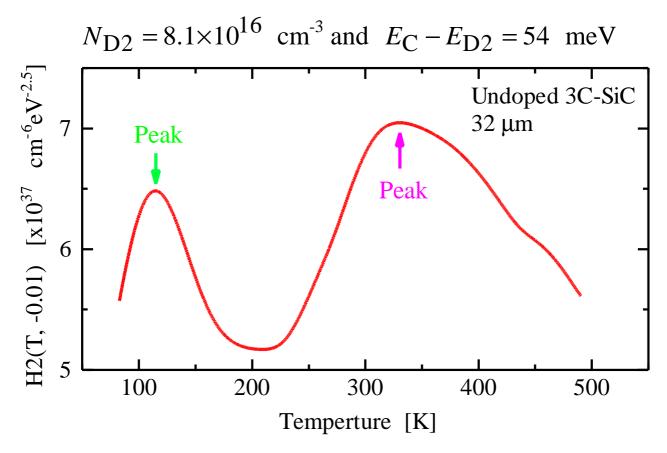
 $H(T_{\text{peak}}, -0.002) = 2.0 \times 10^{38} \text{ cm}^{-6} \text{eV}^{-2.5}$
 $E_{\text{C}} - E_{\text{D2}} = 54 \text{ meV}$
 $N_{\text{D2}} = 8.1 \times 10^{16} \text{ cm}^{-3}$

Function $H2(T, E_{ref})$ that is not influenced

by the second donor

$$H2(T, E_{\text{ref}}) \equiv \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$
$$-\frac{N_{\text{D2}}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{D2}}) - E_{\text{ref}}}{kT}\right] I(E_{\text{D2}})$$

with



Determination of the density N_{D1} and energy levels E_{D1}

of the donor corresponding to the lower peak $T_{\text{peak}} = 115 \text{ K}$ $H2(T_{\text{peak}}, -0.01) = 6.5 \times 10^{37} \text{ cm}^{-6} \text{eV}^{-2.5}$ Around 115 K, n(T) is approximately expressed as $n(T) \cong N_{D1} [1 - f(E_{D1})] - N_A,$

Therefore, $H2(T, E_{ref})$ is approximately described as

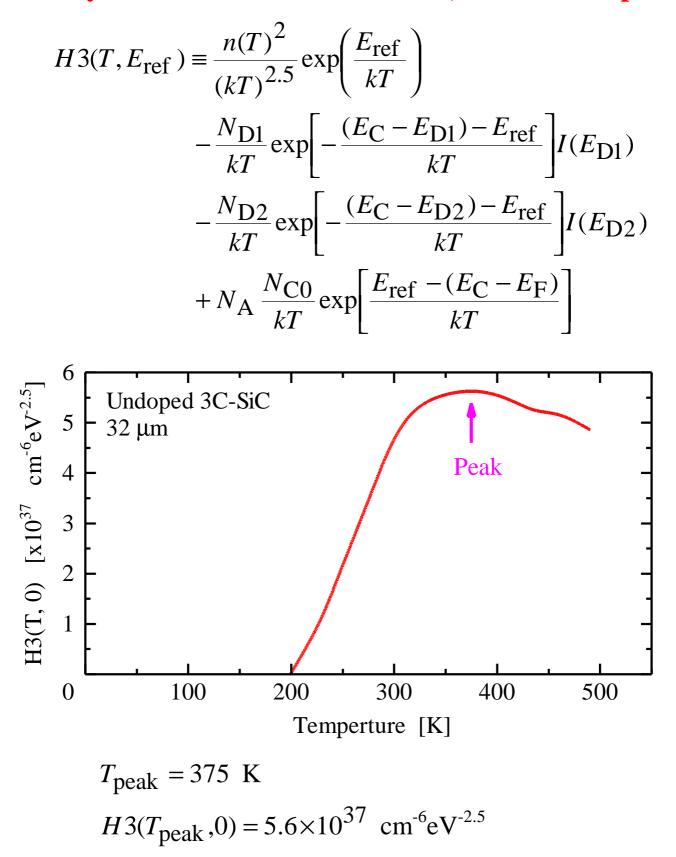
$$H2(T, E_{\text{ref}}) \cong \frac{N_{\text{D1}}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{D1}}) - E_{\text{ref}}}{kT}\right] I(E_{\text{D1}})$$
$$-N_{\text{A}} \frac{N_{\text{C0}}}{kT} \exp\left[\frac{E_{\text{ref}} - (E_{\text{C}} - E_{\text{F}})}{kT}\right]$$

$$T_{\text{peak}} = 115 \text{ K}$$

 $H2(T_{\text{peak}}, -0.01) = 6.5 \times 10^{37} \text{ cm}^{-6} \text{eV}^{-2.5}$
 I
 $E_{\text{C}} - E_{\text{D1}} = 14 \text{ meV}$
 $N_{\text{D1}} = 4.7 \times 10^{16} \text{ cm}^{-3}$
 $N_{\text{A}} = 5.7 \times 10^{15} \text{ cm}^{-3}$

Function $H3(T, E_{ref})$ that is not influenced

by the first and second donors, and the acceptor



Around 375 K, $H3(T, E_{ref})$ is approximately described as

$$H3(T, E_{\text{ref}}) \cong \frac{N_{\text{D3}}}{kT} \exp\left[-\frac{(E_{\text{C}} - E_{\text{D3}}) - E_{\text{ref}}}{kT}\right] I(E_{\text{D3}})$$

$$T_{\text{peak}} = 375 \text{ K}$$

 $H3(T_{\text{peak}}, 0) = 5.6 \times 10^{37} \text{ cm}^{-6} \text{eV}^{-2.5}$
 $E_{\text{C}} - E_{\text{D3}} = 120 \text{ meV}$
 $N_{\text{D3}} = 1.0 \times 10^{17} \text{ cm}^{-3}$

Origin of donors

14 meV donor

defect-impurity complex or nonstoichiometric defect

(this donor reported in undoped 3C-SiC grown by a

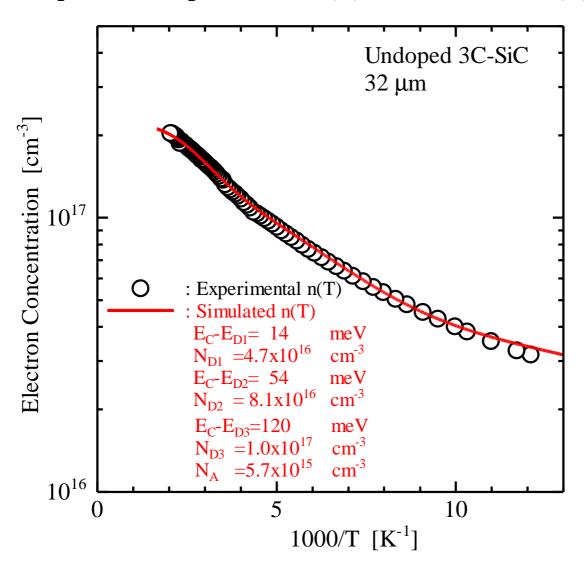
mixture of SiH₄ and C₃H₈)

54 meV donor

substitutional nitrogen atom

120 meV donor

this donor not reported yet



Comparison of experimental n(T) with simulated n(T)

The n(T), which is simulated using the results determined by $H(T, E_{ref})$, is **qualitatively in agreement with** the experimental n(T).

The obtained results are reasonable.

N-doped 4H-SiC

Growth condition (chemical vapor deposition)

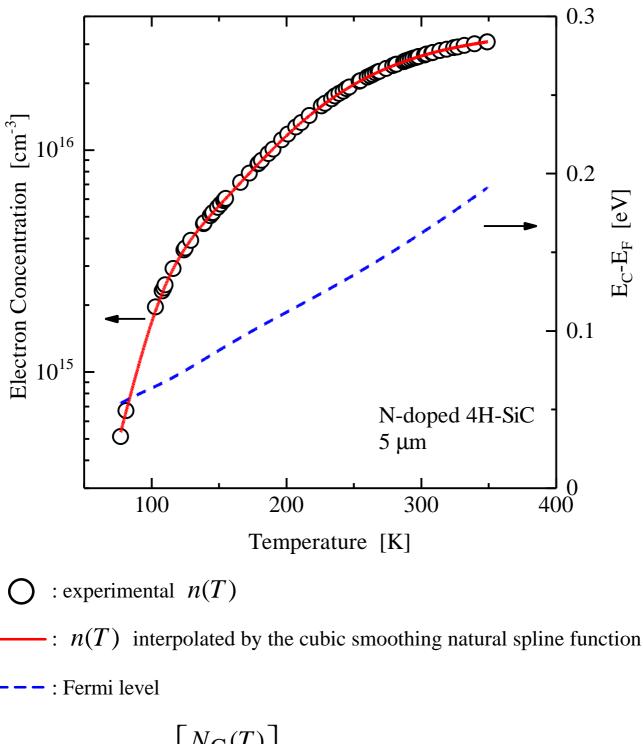
Gases:	1% SiH ₄ with H_2
	1% C_3H_8 with H_2

Pressure: 760 Torr

Temperature: 1560 °C

- 1. Preparation of 4H-SiC with off-orientation of about 5° from {0001} toward <1120> by a sublimation method
- 2. Growth of 2 µ m thick p-type 4H-SiC on 4H-SiC substrate
- 3. Growth of 5 µ m thick N-doped (n-type) 4H-SiC on p-type 4H-SiC
 SiH₄: 0.30 sccm
 C₃H₈: 0.20 sccm
 H₂: 3.0 slm
 N₂: 2.5x10⁻² sccm

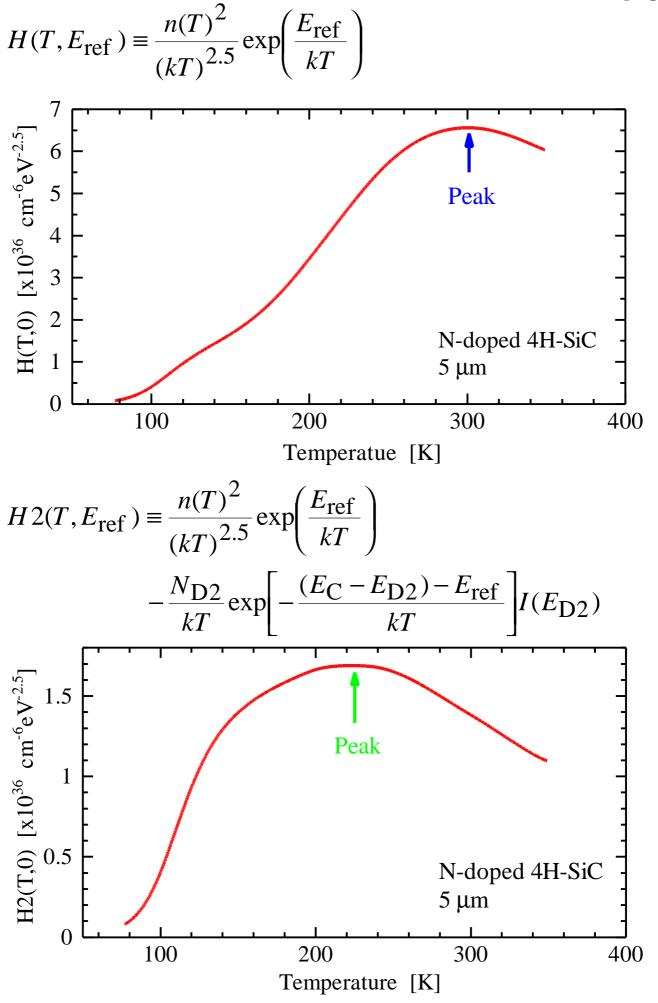
Electron concentration and Fermi level

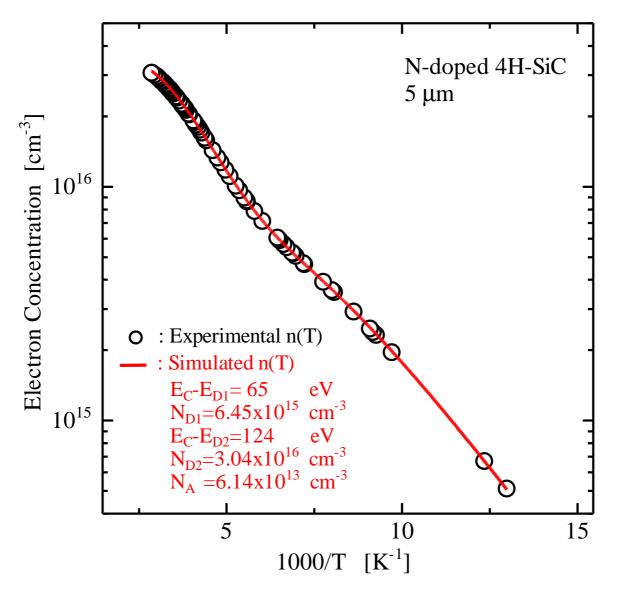


$$E_{\rm C} - E_{\rm F} = kT \ln \left[\frac{N_{\rm C}(T)}{n(T)} \right]$$

where

$$N_C(T) = 2.7 \times 10^{15} T^{3/2} \text{ cm}^{-3}$$





Comparison of experimental n(T) with simulated n(T)

The n(T), which is simulated using the results determined by $H(T, E_{ref})$, is **qualitatively in agreement with** the experimental n(T).

The obtained results are reasonable.

65 meV donor \longrightarrow N donor at the hexagonal site

124 meV donor → N donor at the cubic site

Undoped 6H-SiC

Growth condition (chemical vapor deposition)

Gases: 1% SiH₄ with H₂

1% C_3H_8 with H_2

Pressure: 760 Torr

Temperature: 1500 °C

- 1. Preparation of 6H-SiC substrate by a sublimation method
- 2. Growth of thick p-type 6H-SiC on 6H-SiC substrate
- 3. Growth of $10 \ \mu m$ thick undoped (n-type) 6H-SiC on
 - p-type 6H-SiC

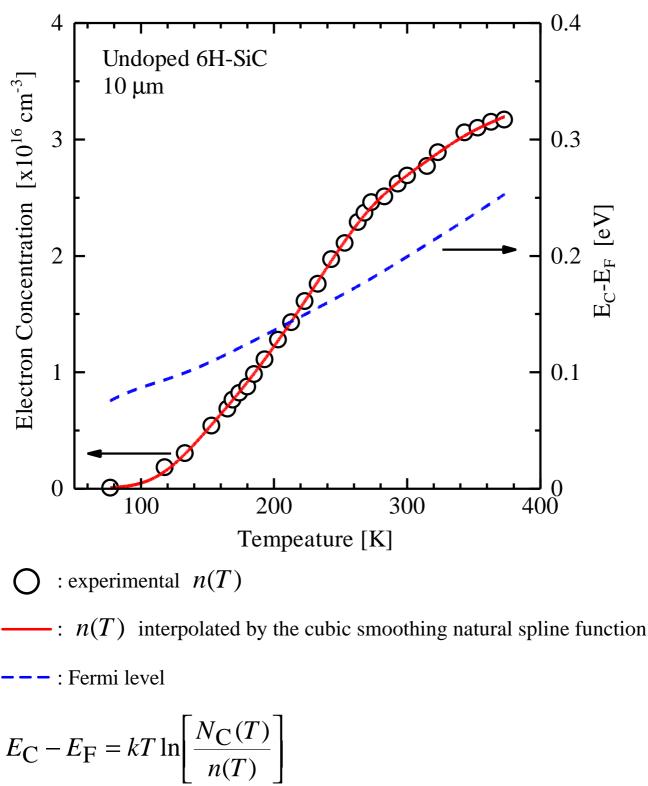
SiH₄: 0.30 sccm

C₃H₈: 0.20 sccm

H₂: 3.0 slm

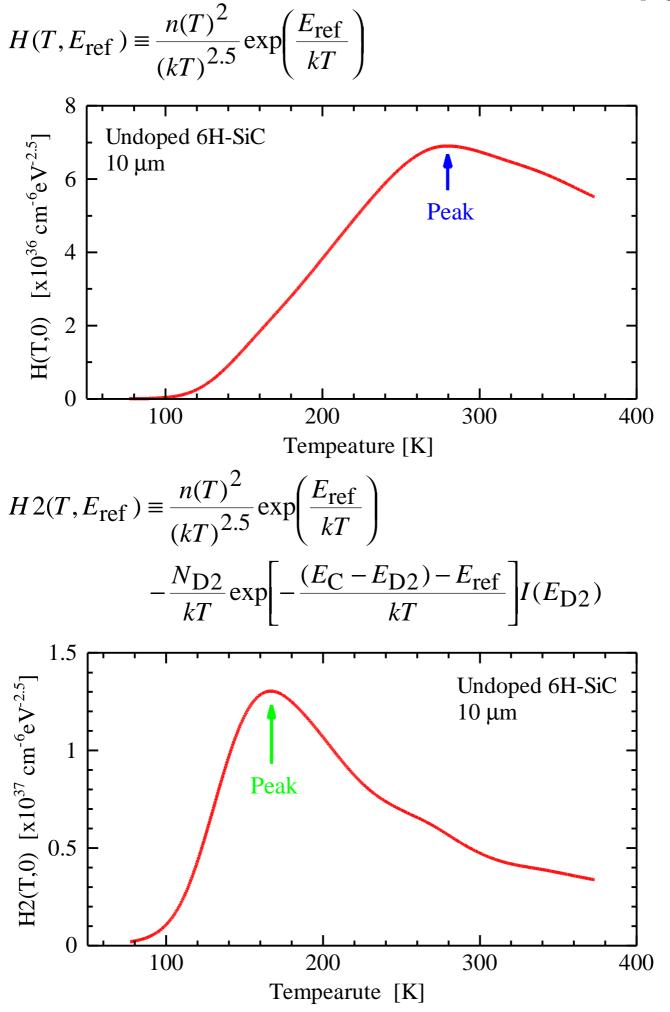
C/Si ratio in source gases: 2

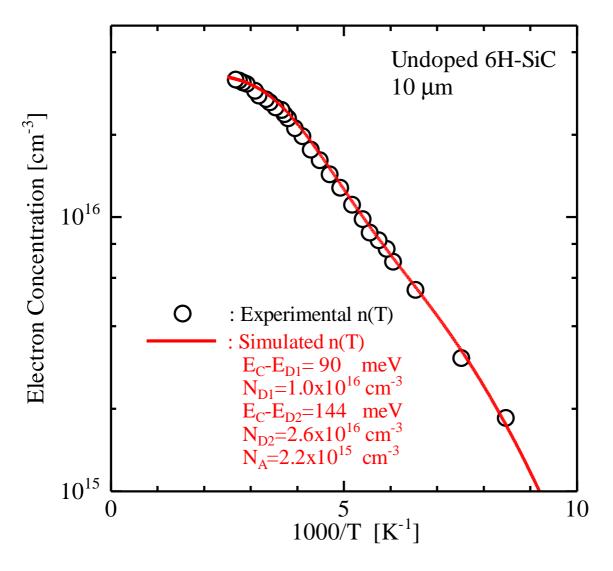
Electron concentration and Fermi level



where

$$N_C(T) = 1.2 \times 10^{16} T^{3/2} \text{ cm}^{-3}$$





Comparison of experimental n(T) with simulated n(T)

The n(T), which is simulated using the results determined by $H(T, E_{ref})$, is **qualitatively in agreement with** the experimental n(T).

The obtained results are reasonable.

90 meV donor \longrightarrow N donor at the hexagonal site

144 meV donor \longrightarrow N donor at the cubic site

Conclusions

The temperature dependence of the majority-carrier concentration n(T) is obtained by Hall-effect measurements.

Using
$$H(T, E_{\text{ref}}) = \frac{n(T)^2}{(kT)^{2.5}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$
 that we proposed,

- 1. we can determine how many types of donors are included in SiC,
- 2. we can determine the density and energy levels of each donor accurately,
- 3. we can verify the obtained results easily.

References

- 1) H. Matsuura and K. Sonoi: Jpn. J. Appl. Phys. 35 (1996) L555.
- 2) H. Matsuura: Jpn. J. Appl. Phys. 36 (1997) 3541.
- 3) H. Matsuura, Y. Uchida, T. Hisamatsu and S. Matsuda: Jpn. J. Appl. Phys. 37 (1998) 6034.
- 4) H. Matsuura, T. Kimoto and H. Matsunami: Jpn. J. Appl. Phys. 38 (1999) 4013.
- 5) H. Matsuura: Jpn. J. Appl. Phys. **38** (1999) 5176.
- 6) H. Matsuura, Y. Uchida, N. Nagai, T. Hisamatsu, T. Aburaya and S. Matsuda: Appl. Phys. Lett. **76** (2000) 2092.

More information is in the web site (http://www.osakac.ac.jp/labs/matsuura).