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Background 
Silicon carbide (SiC) has been regarded as a 

promising semiconductor for power electronic 

applications. 

In order to use SiC wafers or epilayers to electronic 

devices, an accurate evaluation of densities and 

energy levels of dopants and defects in SiC is 

essential. 

Aim 
1. To determine how many types of impurities and 

defects are included in SiC 

2. To determine the densities and energy levels of 

impurities and defects 

3. To verify the obtained results 

Experimental method 
Hall-effect measurement 

New evaluation method 
Propose a function to be evaluated 
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Proposed function to be evaluated 
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)(Tn : temperature dependence of majority carrier concentration 

k : Boltzmann constant     T : absolute temperature 

refE : parameter that can shift the peak temperature of ),( refETH  

 

Good points of this function 
1. ),( refETH  has a peak corresponding to each 

energy level of impurity or defect. 

i -th peak temperature         energy level of i -th impurity or defect 

i -th peak value              density of i -th impurity or defect 

 

 

 

 

 

 

 2. Compensated density can be determined. 
Tpeak2 Tpeak1 

H(Tpeak1,Eref) 

H(Tpeak2,Eref) 
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Theoretical consideration 
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 Consider n-type semiconductor 

Substitute two different )(Tn  expressed as follows  

for each )(Tn  in definition. 

1. )(Tn  from charge neutrality condition 
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2. )(Tn  from effective density of states 
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CE : energy level at the bottom of the conduction band 

FE : Fermi level       )(Ef : Fermi-Dirac distribution function 

iED : i -th donor level           iND : i -th donor density 

iETE : i -th electron trap level     iNTE : i -th electron trap density 

AN : acceptor density 

)(C TN : effective density of states in the conduction band 

n types of donors 

m types of electron traps 

acceptor 
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Pay attention to the function 
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Peculiar feature of  
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),( refETF  has a peak value of  
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Good points of our analysis 

1. Using 
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we can determine the density and energy level of the 

impurity or defect corresponding to each peak. 

2. As is clear from 
k
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i
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a parameter refE  can shift the peak of ),( refETH  to 

the measurement temperature range even when none of 

the peaks of )0,(TH  appear within the measurement 

temperature range. 

3. Although iTpeak  is a little different from 

k
EEE i refC )( −−

 due to the temperature dependence of 

)( iEI , 

we can easily determine the accurate iN  and iE  from 

each peak temperature and peak value using a personal 

computer. 

4. We can determine how many types of impurities and 

defects are included in the semiconductor from the 

number of peaks in ),( refETH . 
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Undoped 3C-SiC 
Growth conditions  

(Atmospheric pressure chemical vapor deposition) 

1. (100) n-type Si substrate 

2. Etching of Si substrate surface 

1175 oC,  11 min.,  HCl: 63 sccm,  H2: 1.5 slm 

3. Formation of buffer layer  

(Carbonization of Si substrate surface) 

1350 oC,  3 min.,  C3H8: 1 sccm,  H2: 1 slm 

4. Growth of undoped 3C-SiC 

1350 oC,  Si2(CH3)6: 0.5 sccm,  H2: 2.5 slm 

growth rate: 4.3 μm/h 

 

Conditions of Hall-effect measurement 

Removal of Si substrate (chemical etching) 

Thickness: 32μm 

Size: 5x5 mm2 

Magnetic field: 5 kG 

Temperature range: 85 K ~ 500 K 
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Electron concentration and Fermi level 
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     : experimental )(Tn  

     : )(Tn  interpolated by the cubic smoothing natural spline function 

     : Fermi level 
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Function to be evaluated 
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One peak and one shoulder appear. 

 

At least two kinds of energy levels are included. 
 

Determination of the density 2DN  and energy levels 2DE   

of the donor corresponding to the lower peak 

        160peak =T  K 

        38
peak 100.2)002.0,( ×=−TH  cm-6eV-2.5 
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Around 160 K, )(Tn  is approximately expressed as 

[ ])(1)()( 2D2DA1D EfNNNTn −+−≅ , 

1DN : density of the donor shallower than donor corresponding to  

160 K when a shallower donor is included. 

 

Therefore, ),( refETH  is approximately described as 
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        160peak =T  K 

        38
peak 100.2)002.0,( ×=−TH  cm-6eV-2.5 

 

542DC =− EE  meV 

16
2D 101.8 ×=N  cm-3 
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Function ),(2 refETH  that is not influenced  

by the second donor 
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with 

     16
2D 101.8 ×=N  cm-3 and 542DC =− EE  meV 
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Determination of the density D1N  and energy levels D1E   

of the donor corresponding to the lower peak 

        115peak =T  K 

        37
peak 105.6)01.0,(2 ×=−TH  cm-6eV-2.5 
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Around 115 K, )(Tn  is approximately expressed as 

[ ] A1D1D )(1)( NEfNTn −−≅ , 

 

Therefore, ),(2 refETH  is approximately described as 
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        115peak =T  K 
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141DC =− EE  meV 
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         15
A 107.5 ×=N   cm-3 
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Function ),(3 refETH  that is not influenced  

by the first and second donors, and the acceptor 





 −−

+





 −−
−−





 −−
−−







≡

kT
EEE

kT
N

N

EI
kT

EEE
kT

N

EI
kT

EEE
kT

N

kT
E

kT

Tn
ETH

)(
exp

)(
)(

exp

)(
)(

exp

exp
)(

)(
),(3

FCref0C
A

2D
ref2DC2D

1D
ref1DC1D

ref
5.2

2
ref

 

H
3(

T,
 0

)  
 [x

10
37

   
cm

-6
eV

-2
.5
]

Temperture  [K]

Undoped 3C-SiC
32 µm

Peak

0 100 200 300 400 500

1

2

3

4

5

6

 
        375peak =T  K 

        37
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Around 375 K, ),(3 refETH  is approximately 

described as 
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        375peak =T  K 
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17
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Origin of donors 

14 meV donor 

defect-impurity complex or nonstoichiometric defect 

(this donor reported in undoped 3C-SiC grown by a 

mixture of SiH4 and C3H8) 

54 meV donor 

    substitutional nitrogen atom 

120 meV donor 

    this donor not reported yet 
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Comparison of experimental )(Tn  with simulated )(Tn  
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The )(Tn , which is simulated using the results determined by 

),( refETH , is qualitatively in agreement with the 

experimental )(Tn . 

 

The obtained results are reasonable. 
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N-doped 4H-SiC 
Growth condition (chemical vapor deposition) 

Gases:      1% SiH4 with H2 

           1% C3H8 with H2 

Pressure:    760 Torr 

Temperature: 1560 oC 

1. Preparation of 4H-SiC with off-orientation of about 5o 

from {0001} toward <1120> by a sublimation method 

2. Growth of 2μm thick p-type 4H-SiC on 4H-SiC 

substrate 

3. Growth of 5μm thick N-doped (n-type) 4H-SiC on 

p-type 4H-SiC 

SiH4: 0.30 sccm 

C3H8: 0.20 sccm 

H2: 3.0 slm 

N2: 2.5x10-2 sccm 
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Electron concentration and Fermi level 
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     : experimental )(Tn  

     : )(Tn  interpolated by the cubic smoothing natural spline function 

     : Fermi level 
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Comparison of experimental )(Tn  with simulated )(Tn  
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The )(Tn , which is simulated using the results determined by 

),( refETH , is qualitatively in agreement with the 

experimental )(Tn . 

 

The obtained results are reasonable. 
65 meV donor       N donor at the hexagonal site 

124 meV donor      N donor at the cubic site 
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Undoped 6H-SiC 
Growth condition (chemical vapor deposition) 

Gases:      1% SiH4 with H2 

           1% C3H8 with H2 

Pressure:    760 Torr 

Temperature: 1500 oC 

1. Preparation of 6H-SiC substrate by a sublimation method 

2. Growth of thick p-type 6H-SiC on 6H-SiC substrate 

3. Growth of 10μm thick undoped (n-type) 6H-SiC on 

p-type 6H-SiC 

SiH4: 0.30 sccm 

C3H8: 0.20 sccm 

H2: 3.0 slm 

C/Si ratio in source gases: 2 
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Electron concentration and Fermi level 
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     : experimental )(Tn  

     : )(Tn  interpolated by the cubic smoothing natural spline function 

     : Fermi level 
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Comparison of experimental )(Tn  with simulated )(Tn  
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The )(Tn , which is simulated using the results determined by 

),( refETH , is qualitatively in agreement with the 

experimental )(Tn . 

 

The obtained results are reasonable. 
90 meV donor       N donor at the hexagonal site 

144 meV donor      N donor at the cubic site 
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Conclusions 
The temperature dependence of the majority-carrier 

concentration )(Tn is obtained by Hall-effect 

measurements. 
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1. we can determine how many types of donors are 

included in SiC, 

2. we can determine the density and energy levels of 

each donor accurately, 

3. we can verify the obtained results easily. 
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