多数キャリア密度の温度依存性を用いた 新しい評価方法による SiC 中のドナー評価

松浦秀治¹)、木本恒暢²)、松波弘之²)

1) 大阪電気通信大学工学部電子工学科2) 京都大学大学院工学研究科電子物性工学専攻

1.はじめに

半導体中のドーパント密度とエネルギー準位の評価 の必要性

2.ホール効果測定による結果の一般的な評価方法

a. $\ln n(T) - 1/T$ の飽和値と傾き

- b. カーブ・フィッティング
- 3 . 新しい評価方法の提案

$$S(T, E_{\text{ref}}) = \frac{n(T)}{kT} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

4 . 窒素をドープした 4H SiC のドナー密度と

ドナー準位の評価

5.まとめ

1.はじめに

新しい半導体の成長

- 族半導体(発光デバイスを目指して) SiC、ダイヤモンド(高温動作・高電力用デバイスを 目指して)

<u>電子デバイスとして利用するには、</u> pn 制御が必要

<u>最適なドーパント(ドナー、アクセプタ)</u>

- a. ドープしたドーパントのほとんどがドナーまたは
 アクセプタとしてはたらく
- b. イオン化エネルギー(エネルギー準位)が小さい

<u>半導体中のドーパントの密度とエネルギー準</u> 位を正確に評価できる方法の開発

窒素をドープした 4H SiC

- a. 窒素をドープすると、六方晶と立方晶に入り、 二種類のドナー準位が形成される。
- b. p 型の上に成長させるため、アクセプタが混入す る。

ホール効果測定からのデータ

このデータから、ドナー密度 N_p とドナー準位 E_p を評価するには?

2.ホール効果測定による結果の一般的な評価方法

a. $\ln n(T) - 1/T$ による評価 - 種類のドナーだけの場合 $(E_D = 124 \text{ meV}, N_D = 1 \times 10^{16} \text{ cm}^{-3})$ シミュレーション結果 10^{16} 1015 n(T) $[cm^3]$ 1014 1013 10^{12} 5 10 0 15

1000/T [K⁻¹]

飽和値から N_D=1x10¹⁶ cm⁻³

傾きから
$$E_{\rm D}=127 \text{ meV} \leftarrow n(T) \propto \exp\left(-\frac{\Delta E_{\rm D}}{2kT}\right)$$

2種類のドナーが存在する場合

 E_{D1} =124 meV, N_{D1} =1x10¹⁶ cm ³

No.	E _{D2} [meV]	$N_{D2} [x10^{16} \text{ cm}^{-3}]$
1		0
2	64	0.1
3		0.5
4		1

飽和値?

傾き?

アクセプタが混在する場合

$$E_D = 124 \text{ meV}, N_D = 1 \times 10^{16} \text{ cm}^{-3}$$

No.	$N_{\rm A}$ [x10 ¹⁶ cm ⁻³]
1	0
2	0.1
3	0.5

シミュレーション結果

評価結果

No.	E _D [meV]	$N_{\rm D}$ [x10 ¹⁶ cm ⁻³]
1	127	1
2	251	0.89
3	255	0.49

 $\Delta E_{\rm D}$ と $N_{\rm D}$ を間違って評価

b. カーブ・フィッティング

$$n(T) = N_{\rm C}(T) \exp\left(-\frac{\Delta E_{\rm F}}{kT}\right)$$
(1)

$$n(T) = \sum_{i=1}^{n} N_{\text{D}i} [1 - f_{\text{D}} (\Delta E_{\text{D}i})] - N_{\text{A}}$$
(2)

上式から、n 種類のドナー(N_{Di} 、 E_{Di})と N_A を求める。

- 問題点:1.カーブ・フィッティングをする前に、ドナー の種類の数を仮定しなければならない。 2.(2n+1)個のパラメータを、同時に決定しな
 - 2 . (2n+1)個のハラメータを、同時に決定しな ければならない。

c. Hoffmann の方法

各エネルギー準位に対応してピークが現れる関数を定 義する。

微分しているため、ピークを決めにくい

- 3.新しい評価方法の提案
 - A. データを微分しない
 - B. ドーパントを1つ1つ高精度で決定する。

<u>各ドーパントのエネルギー準位に対応する温度で</u> ピークになる関数を定義する。

定義式
$$S(T, E_{\text{ref}}) = \frac{n(T)}{kT} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

電気的中性条件から、n型半導体の電子密度:

$$n(T) = \sum_{i=1}^{n} N_{\text{D}i} [1 - f_{\text{D}}(\Delta E_{\text{D}i})] \quad n \ \text{種類のドナ-}$$

$$- \sum_{i=1}^{m} N_{\text{TE}i} f_{\text{D}}(\Delta E_{\text{TE}i}) \quad m \ \text{種類の電子トラップ}$$

$$- \sum_{i=1}^{k} N_{\text{A}i} f_{\text{A}}(\Delta E_{\text{A}i}) \quad k \ \text{種類のアクセプタ}$$

$$+ \sum_{i=1}^{l} N_{\text{TH}i} [1 - f_{\text{A}}(\Delta E_{\text{TH}i})] \quad 1 \ \text{種類の正孔トラップ}$$

$$+ p(T) \qquad \text{El 密度}$$

定義式
$$S(T)$$

 $S(T, E_{\text{ref}}) \equiv \frac{n(T)}{kT} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$

展開した式

$$\begin{split} S(T, E_{\text{ref}}) &= \sum_{i=1}^{n} \frac{N_{\text{D}i}}{kT} \exp\left(-\frac{\Delta E_{\text{D}i} - E_{\text{ref}}}{kT}\right) F_{\text{D}}(\Delta E_{\text{D}i}) \\ &+ \sum_{i=1}^{m} \frac{N_{\text{TE}i}}{kT} \exp\left(-\frac{\Delta E_{\text{TE}i} - E_{\text{ref}}}{kT}\right) F_{\text{D}}(\Delta E_{\text{TE}i}) \\ &+ \sum_{i=1}^{k} \frac{N_{\text{A}i}}{kT} \exp\left(-\frac{\Delta E_{\text{A}i} - E_{\text{ref}}}{kT}\right) F_{\text{A}}(\Delta E_{\text{A}i}) \\ &+ \sum_{i=1}^{l} \frac{N_{\text{TH}i}}{kT} \exp\left(-\frac{\Delta E_{\text{TH}i} - E_{\text{ref}}}{kT}\right) F_{\text{A}}(\Delta E_{\text{TH}i}) \\ &- \left(\sum_{i=1}^{m} N_{\text{TE}i} + \sum_{i=1}^{k} N_{\text{A}i}\right) \frac{1}{kT} \exp\left(\frac{E_{\text{ref}}}{kT}\right) \\ &+ \frac{p(T)}{kT} \exp\left(\frac{E_{\text{ref}}}{kT}\right) \end{split}$$

右辺4項目までは、関数

$$\frac{N_i}{kT} \exp\left(-\frac{\Delta E_i - E_{\text{ref}}}{kT}\right)$$
が含まれる。

$$\frac{N_{i}}{kT}\exp\left(-\frac{\Delta E_{i} - E_{\text{ref}}}{kT}\right)$$
は、温度 $T_{\text{peak}} = \frac{\Delta E_{i} - E_{\text{ref}}}{k}$ で
ピーク値 $\frac{N_{i}}{kT_{\text{peak}}}\exp(-1)$ になる。

例えば、2種類のドナーと1種類のトラップの場合 ($\Delta E_{D1} < \Delta E_{D2} < \Delta E_T$) $S(T, E_{\text{ref}}) = \frac{N_{\text{D2}}}{kT} \exp\left(-\frac{\Delta E_{\text{D2}} - E_{\text{ref}}}{kT}\right)$ $= \frac{N_{\text{D1}}}{kT} \exp\left(-\frac{\Delta E_{\text{D1}} - E_{\text{ref}}}{kT}\right) / \frac{N_{\text{T}}}{kT} \exp\left(-\frac{\Delta E_{\text{T}} - E_{\text{ref}}}{kT}\right)$ T_{D1} T_{D2} Тт

 $\Delta E_{D1} = kT_{D1} + E_{ref}$ $N_{D1} = S(T_{D1})kT_{D1} / \exp(-1)$ $\Delta E_{D2} = kT_{D2} + E_{ref} \qquad N_{D2} = S(T_{D2})kT_{D2} / \exp(-1)$ $\Delta E_{\rm T} = kT_{\rm T} + E_{\rm ref} \qquad N_{\rm T} = S(T_{\rm T})kT_{\rm T} / \exp(-1)$

4. 窒素をドープした 4H SiC のホール効果測定から

ドナー密度とドナー準位の評価

丸印:実験データ

実線:spline 関数を用いて、実験データを補間 破線: $\Delta E_{\rm F}$

$$n(T) = N_{\rm C}(T) \exp\left(-\frac{\Delta E_{\rm F}}{kT}\right)$$

 $N_{\rm C}(T) = 2.71 \times 10^{15} T^{3/2} {\rm cm}^{-3}$

だいたい 0.05 eV から 0.2 eV までの E_D が評価できる。

るから。

実線と一点鎖線との差:浅いドナーとアクセプタの分

深いドナーの影響を取り除いた関数 $S2(T, E_{\text{ref}}) \equiv S(T, E_{\text{ref}})$ $-\frac{N_{\rm D2}}{kT}\exp\left(-\frac{\Delta E_{\rm D2}-E_{\rm ref}}{kT}\right)F_{\rm D}(\Delta E_{\rm D2})$ 4 Т S2(T,0) [x10¹⁷ cm⁻³eV⁻¹] 3 peak1 2 1 - : Experimental data 0 100 200 300 400 Temperature [K]

peak1

良く一致していることから、他にドナーが存在しない。

得られた結果

非常に良い一致をしている。

		試米斗 1	試料 2
E_{D1}	[eV]	0.0653	0.0622
N_{D1}	[cm ⁻³]	6.45×10^{15}	$3.23 x 10^{15}$
E _{D2}	[eV]	0.124	0.115
N _{D2}	[cm ⁻³]	$3.04 \mathrm{x10}^{16}$	2.65×10^{15}
N _A	[cm ⁻³]	6.14×10^{13}	6.33×10^{13}

報告されているドナー準位(IR、PL等)

hexagonal-like site 45 meV ~ 66 meV cubic-like sites 92 meV ~ 124 meV 10 MeV の陽子線を 3 x 10¹³ cm⁻² 照射したときに形成さ れた、p 型 Si 中のトラップ評価 (アクセプタ密度:2.19x10¹⁵ cm⁻³)

	E _T	[eV]	N_{T}	[cm ^{- 3}]
peak1	0.0949		$4.75 \mathrm{x} 10^{14}$	
peak2	0.1	.91	5.	87×10^{14}

5.まとめ

- A. ホール効果測定から求められる多数キャリア密度の
 温度依存性から、高精度でドーパントおよびトラップを評価できる方法を提案した。
- B. 窒素をドープした 4H SiC から、二種類のドナー準 位とアクセプタ密度が精度良く評価できた。
- C. 上記のほかに、放射線(陽子線・電子線)を照射して、形成された Si 中のトラップを高精度で評価できるようになった。

Jpn. J. Appl. Phys. 37 (1998) 6034.

謝辞

データ解析の一部を手伝っていただいた松浦研究室の 卒業研究生の黒田雅世さんと平野善信君に感謝します。