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The purpose of this study is to propose a simple graphical method for determining the polarization and
relaxation times of dipoles and for determining the densities and energy levels of traps in a dielectric film. Using
the transient discharge current density Jais(t) which flows in a capacitor consisting of a dielectric film between
two electrodes, a function S(t) is defined as S(t) = t - Jais(t) exp(1). For dipoles with discrete relaxation times
(7:1) or for traps with discrete energy levels (AFE:;) where the subscript i represents the i-th dipole or trap, S(¢)
has peaks corresponding to each 7; or AEy;. Using each peak, therefore, one can easily determine the dipole
polarization (Ps;) and 7, or the trap density (Ni;) and AEy;. By a simple curve-fitting procedure, moreover, one
can easily evaluate the continuously distributed dipole polarization Ps(7) or energetically distributed trap density

N¢(AEY).
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1. Introduction

Dioxide silicon (Si0,) has played an important role in
the performance characteristics of large scale integrated
circuits (LSIs). In order to enlarge the capacitance of the
capacity in memory element cells in a dynamic random-
access memory (DRAM) or to reduce the operating volt-
age of field-effect transistors (FETSs), it is necessary to
decrease the thickness of SiO,, or to make use of insula-
tors with dielectric constants higher than the dielectric
constant (3.9) of SiO,. ;

The dielectric breakdown of insulators is one of
the most important problems affecting their reliability.
Traps in insulators are reported to be one cause of this
problem.” Moreover, an increase in leakage current at
low electric fields, which could result in insulator break-
down, is induced by high-field stress, and may be related
to the generation of traps in insulators.?) Therefore, it is
necessary to evaluate the densities and energy levels of
traps in insulators.

There are transient capacitance methods for determin-
ing the densities and energy levels of traps, for example,
deep level transient spectroscopy (DLTS)* and isother-
mal capacitance transient spectroscopy (ICTS)*® for
low-resistivity semiconductors, and the heterojunction-
monitored capacitance (HMC) method®™ for high-
resistivity semiconductors such as undoped hydro-
genated amorphous silicon whose resistivity is about
- 10°Q-cm. In the case of applying the transient capac-
itance methods to metal-insulator-semiconductor (MIS)
diodes, mainly traps at the insulator /semiconductor in-
terface can be investigated.®®

Although the following methods can be applied to the
evaluation of the densities and energy levels of traps
in insulators, these methods are less tested than those
for semiconductors. Photocurrent spectroscopic tech-
niques'® are suitable for evaluating the energy levels
of deep traps around the mid gap, and charge-centroid
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methods™!?) are suitable for evaluating the densities of
the deep traps. Although the thermally stimulated cur-
rent (TSC) method!® is suitable for evaluating single-
level shallow traps which could be related to current
flow in insulators, the heating rate of samples should
be kept rigidly constant during measurement. More-
over, in the case of emission processes different from
thermal emission processes, it is difficult to analyze the
data obtained using the TSC method. When the emis-
sion process in the film is unknown, an isothermal mea-
surement is more suitable for evaluating the densities
and energy levels of traps in insulators than the TSC
method. Therefore, we have proposed the discharge cur-
rent transient spectroscopy (DCTS) method in which the
transient discharge current is isothermally measured in
a capacitor consisting of an insulator film between two
electrodes.'® % This method can be used to evaluate the
densities and energy levels of not only single-level but
also energetically distributed shallow traps ( < 1eV).

When dielectrics (i.e., insulators with high dielectric
constants) are used in DRAM, the device performance
is sensitive to dipole polarization in dielectrics. Re-
cently, a ferroelectric random-access memory, in which
one memory element cell comprises one FET and one
capacitor composed of a ferroelectric, has been inves-
tigated. Moreover, a metal-ferroelectric-semiconductor
FET (MFSFET), in which the gate insulator is com-
posed of a ferroelectric, has been attractive, because one
memory element cell comprises the only FET. In order
to make use of dielectrics or ferroelectrics as insulators
in these devices, the densities and energy levels of traps
in these materials should be investigated. Moreover, an
understanding of the mechanism of dipole relaxation in
these materials is essential.

In order to evaluate the dipole relaxation in these ma-
terials, there are the thermally stimulated depolarization
current (TSDC) method and similar methods.'*-2?) How-
ever, these methods require not only a rigid constant
heating rate but also an assumed temperature depen-
dence of the dipole relaxation time (7). Therefore, an
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isothermal measurement is suitable for evaluating 7 in
dielectrics. DCTS is suitable for evaluating 7,2%2% since
the transient discharge current is measured isothermally
in a capacitor consisting of a dielectric or ferroelectric
film between two electrodes.

When an expression of the form azexp(—az) or
zexp(—az) is obtained where a is a parameter and x
is a variable, the function is maximum at z = 1/a. In
the case of az exp(—az), the maximum value is exp(—1).
This concept is incorporated in the ICTS,** HMC,*"
and DCTS methods. % %2422 Moreover, this concept is
applied to a graphical method for determining the den-
sities and energy levels of impurities in a semiconduc-
tor from the temperature dependence of majority-carrier
concentration.??2%

The purpose of this study is to combine two meth-
ods for determining the densities and energy levels of
traps and for determining the polarization and relaxation
times of dipoles using the transient discharge current of
the capacitor which consists of an insulator, or dielec-
tric or ferroelectric film between two electrodes. In the
following section, we discuss how to analyze the tran-
sient discharge current density, and then discuss individ-
ual cases.

2. Analysis of Transient Discharge Current

2.1 Theoretical consideration

A capacitor, consisting of an insulator, or dielectric or
ferroelectric film between two electrodes of unit area, is
considered. When a voltage V,, is applied to the capac-
itor in the interval of —ty4,, < t < 0, a charge current
density J.(t) flows through the capacitor as shown in
Fig. 1, where J.(t) is the sum of the current density
J.(t) for charging geometric capacity, the absorption cur-
rent density J,(t), and the leakage current density Ji(t)
which flows over the film. J,(t) results from the cap-
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Fig. 1.
density profiles. The circuit for a measurement of transient dis-
charge current density is included.
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ture of charges at traps and/or from the polarization of
dipoles. At t = 0, the -applied voltage is changed from
Vina to Viis, where Vi, is the voltage at which the tran-
sient discharge current is measured. Ji(t) should be much
smaller than the other current densities at V. There-
fore, Vi is usually zero. Since the resistance in the ex-
ternal circuit is very low, the charge due to the geometric
capacity disappears in a short time. At ¢ > 0, therefore,
a discharge current density, which can be experimentally
measured, arises due to the emission of charges at traps
and/or from the depolarization of dipoles.
2.1.1 Duiscrete time constants

Since the time dependence of the carrier emission from
the i-th trap or the depolarization of the i-th dipole is

given by
t
o (-2}, )
T;

the total charge or the total polarization in the film of
unit area, which is expressed as Q(t), is given by

Q=3 Few (-%). 2)

where 7; is the time constant of the i-th trap or dipole,
and F; is the charge or the polarization in the film of unit
area at t = 0, corresponding to 7;. The absolute value
Jais(t) of the transient discharge current density is given
by

Jantt) =~ %0 =S Rl exp (—Ti) NG

because the decrease of Q(t) results in Jy;s(t). We define
a function S(t) as

S(t) =t - Jais(t) exp(1), 4)

which is theoretically expressed as

S() = ZF e><p(1);’iT exp (- t ) . 5)

Ts

As is clear from eq. (5), we have obtained a desirable
function, because S(t) includes the expression of the
form; (t/7;) exp(—t/7;). Using the time (t,cari) at which
S(t) exhibits the i-th peak, the values of 7; and F; can
be determined as

T = tpeaki (6)
and

F; = S(tpeaxi)- )

2.1.2 Continuously distributed time constant
In the case of continuously distributed 7, Q(t) is given
by

Q) = / F(r)exp <—§) dr, (8)

where F(7) is the charge or the polarization in the film
of unit area at t = 0. Jg;.(t) is given by

() = —%ﬁt—) - / F(T); exp (_é) . (9)

From eq. (4), S(¢) is expressed as
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S(t) = / F(r) exp(1) exp ({) dr.  (10)

As is clear from eq. (10), we have obtained a desir-
able function, because S(t) includes the expression of
the form; (¢/7) exp(—t/7).

Let us discuss how to evaluate F'(7) using S(t), based
on the curve-fitting procedure incorporated in the HMC
method which is used to evaluate the density-of-state
distribution in the band gap of amorphous semiconduc-
tors. ™

The value of 5(¢) is calculated using Jy;s(t) and eq. (4).
Using the first trial function F(® (1) which is equal to the
value of S(t) at t = 7, S (¢) is calculated using eq. (10).

Since the function
t t (1)
T P T

in eq. (10) has a maximum at t = 7, F(™~Y(7) has the

greatest influence on S"~V(¢) at t = 7, where n is an

integer and n > 1. Therefore, the next trial function
F®™ (1) is given by

5(7)

F®™(r) = 12

( ) S(n_l)(T) ( )

When S (t) approaches S(t) closely, we obtain the so-

lution

F=1(7),

F(r) = F™ (7). (13)
2.2  Ezamples of the analysis of Jgis(t)

In order to demonstrate how to analyze Jy;.(t), three
kinds of Jus(t) shown in Fig. 2 are considered. The
solid curve represents Jyi.(t) for a constant F(7) of 5 x
107% C/cm?/ log, , 5,2 which is shown as the solid curve
in Fig. 3. The broken curve represents Jy(t) for F(7)
shown as the broken curve in Fig. 3. The dashed-dotted
curve represents Jy.(t) for the film with three kinds
of discrete Fj; [1; (s), Fi (C/em?)] = (0.3, 1 x 107%),
(10, 1 x 10%) and (300, 1 x 10~°).

The solid, broken and dashed-dotted curves in Fig. 4
represent S(¢) calculated using eq. (4) and Jui(¢) ex-
pressed as the solid, broken and dashed-dotted curves
in Fig. 2, respectively. In this figure, the dashed-dotted
curve has three narrow peaks corresponding to the three
kinds of discrete F;, while the solid curve is nearly con-
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Fig. 2. Set of three kinds of Jg;5(2).
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stant over the whole range, and the broken curve has two
broad peaks.

Let us evaluate F'(7) using eq.. (12) and S(t) shown
in Fig. 4.2 The solid curve in Fig. 5 represents F( (1)
for which S(™(t) approaches S(t) very closely. F™(r)
is around 5 x 107% C/cm?/ log,, s, which is close to F(7)
represented by the solid curve in Fig. 3. The broken
curve in Fig. 5 represents F(™ (1) for which S (t) ap-
proaches S(t) very closely, and this broken curve is sim-
ilar to the actual F(7) shown by the broken curve in
Fig. 3. _

The dashed-dotted curve in Fig. 5 represents F(™(r)
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Fig. 3. Set of two kinds of F'(7) with continuously distributed 7,
using which Jg;<(%) in Fig. 2 is calculated.
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corresponding to the film with the three kinds of discrete
F;. Figure 6 shows S(t) (solid curve) and S (¢) (broken
curve) calculated using F(7) shown by the dashed-
dotted curve in Fig. 5. S™(¢) is slightly different from
S(t), although we tried to obtain a value of S™(¢) as
close as possible to that of S(t) using eq. (12). This case
is quite different from the cases of F'(7) with continuously
distributed 7.

In the dashed-dotted curve in Fig. 5, it is clear that
there are three distinct peaks. The values of 7 (s) at the
maxima and the corresponding integral values of F(™ (1)
(C/cm?) are (0.324, 1.03 x 10~%), (11.0, 1.03 x 10~%)
and (331, 1.04 x 10~®). Since the value of T at the i-th
maximum and the integral value of F( (7) correspond
to 7; and Fj, respectively, the values of 7, and F, are
found to be close to the actual values.

On the other hand, it is easy to evaluate 7; and F} using
egs. (6) and (7), when it is considered that the dashed-
dotted curve representing S(t) in Fig. 4 results from the
discrete F;. In the dashed-dotted curve in Fig. 4, ¢, .
(s) at the i-th peak and the corresponding peak value
S(tpears) [C/cm?] are (0.324, 1.09 x 10-°), (11.0, 1.09 x
107%) and (302, 1.00 x 107°). Since 7; = tpear: and F; =
S(tpeaki), the values of 7; and F; are found to be evaluated
accurately.

In the above discussion, we have demonstrated how
to evaluate F'(7) using Jui(t). In the following section,
individual cases are discussed.

3. Evaluation of Polarization and Relaxation Times of
Dipoles

8.1 Dipoles with discrete relazation times

A capacitor consisting of a dielectric film between two
electrodes of unit area is considered. The time and
temperature dependences of dipole polarization in the
film are determined by competition between the orient-
ing action of an electric field and the randomizing ac-
tion of thermal motion. In the elementary theory of di-
electrics,'®'® the buildup of polarization P,;(tx,) in the
capacitor during time t,, after the application of a volt-
age V. at a temperature T is given by an exponential
function of t,,

t
Ppi(tcha) = Psi |:1 - eXP (_2)] ’
T

where P,; and 7; are the steady-state polarization and
relaxation time of the i-th dipole, respectively. Since the
decay of polarization after removal of the applied voltage
Vina 1s expressed as

PO =3 Pultar) o (—Ti) ,

the depolarization current density (i.e., transient dis-
charge current density) Jy.(t) is given by

Jais(t) = —%Et) = Z-Ppi(tcha)% exp <_T£) . (16)

(14)

(15)

7

The values of P,;(tu.) and P(¢) correspond to F; and
Q(t) in egs. (2) and (3), respectively. Therefore, P.; can
easily be evaluated using eq. (14).

Let us consider a dielectric film with three kinds of
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Fig. 6. S(t) calculated using eq. (4) and Jgis(t) shown as the
dashed-dotted curve in Fig. 2, and S(")(t) calculated using eq.
(10) and F(") (1) shown as the dashed-dotted curve in Fig. 5.
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Fig. 7. Set of three kinds of S(¢) for three kinds of #.p,

dipoles; [7; (s), P (C/cm?)] = (0.3, 1x107®°), (10, 1 x
10~*) and (300, 1 x 107%). In the following, we demon-
strate how to determine 7; and P,; more accurately, com-
pared with the methods outlined in §2.2. The solid curve
in Fig. 7 represents S(t) for tg, = 1000s. In the solid
curve, tpear; (3) and S(tpeari) (C/cm?) are (0.326, 1.09 x
10%), (10.8, 1.09 x 10~5) and (300, 9.64 x 10~°). The
values of 7; and P,;(1000) can be obtained using eqgs. (6)
and (7). However, the obtained values of 7; (1 = 1,2) are
greater than the actual values, because S(#yeari) is af-
fected by the (i + 1)-th dipole. In order to determine 7,
and P,; accurately, one must obtain S(¢) for ¢y, = 0.326
s (the first peak time in the solid curve), which is
shown as the broken curve in Fig. 7. Since tpeu is
0.302s, 74 is 0.302s. Since S(tyeqrr ) is 6.65x107% C/cm?,
P,,(0.326) is 6.65x 107% C/cm? and then P,; is evaluated
as 1.01 x 107° C/cm? using eq. (14). Next, one must ob-
tain S(t) for ¢, = 10.8s (the second peak time in the
solid curve) in order to evaluate 7, and P,, accurately.
This curve is shown as the dashed-dotted curve in Fig. 7.
Since tpeaxe and S(fpeax2) in the dashed-dotted curve
are 10.0s and 6.64 x 107 C/cm?, respectively, 7, and
P,,(10.8) are 10.0 s and 6.64 X 107% C/cm?, respectively.
Using eq. (14), P., is evaluated as 1.01 X 107° C/cm?. In
the solid curve, 73 and P.; are evaluated to be 300 s and
1.00 x 107° C/cm?, respectively. These evaluated values
are almost equal to the actual values.
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8.2 Dipoles with continuously distributed relazation
time
In the case of dipoles with continuously distributed 7,
the buildup of polarization P,(T,tu.) in the capacitor
during t.,, after the application of V. at T is given by
an exponential function of .,

P,(7,tewa) = Po(7) [1 ~exp (-t:)] . an

where P,(7) is the steady-state polarization correspond-
ing to 7. Since the decay of polarization after removal of
Vina is expressed as

P = [ B tan)esp (~1 ) ar,

Jais(t) is given by

Taia(t) = --d-? - / P.(r, tcha)% exp (-é) dr. (19)

The values of P,(7,tu.,) and P(t) correspond to F(7) and
Q(t) in egs. (8) and (9), respectively. Therefore, P,(7)
can easily be evaluated using eq. (17).

A dielectric film with the steady-state polarization
P,(7) shown in Fig. 8 is considered. The solid and broken
curves in Fig. 9 represent Jy;,(¢) and S(t) for tg,, = 100 s,
respectively. Using the curve-fitting procedure outlined
in §2, P, (7, tcha) shown as the solid curve in Fig. 10 is ob-
tained. Using eq. (17), P.(7) shown as the broken curve

(18)
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in Fig. 10 is obtained, which is quite similar to the actual
P,(7) shown in Fig. 8.

Since P.(7) for a particular T" and V. (ie., electric
field F,) can be evaluated using this method, the depen-
dence of P.(7) on T or F, can be investigated in detail.
As mentioned above, this method is suitable for the in-
vestigation of P,(7) in dielectrics (or ferroelectrics) with
both discrete and continuously distributed 7.

4. Evaluation of Densities and Energy Levels of Traps

4.1  Traps with discrete energy levels

A capacitor consisting of a dielectric film between two
electrodes of unit area is considered. The important pa-
rameters of traps in the film are the emission rate (e)
from a trap and the trap density (IV,), where the rela-
tionship between e; and T is

(20)

€ = —.
T

In order to simplify the following arguments, all traps are
assumed to be filled with charged carriers when Vg, is
applied to the capacitor in the interval of —t.4,., <t < 0.
The charge Q;(0) per unit area for the i-th trap level is
expressed as

Q:(0) = qNu;, (21)

where N,; is the density of the ¢-th trap per unit area,
and ¢ is the magnitude of an electronic charge.
Since trapped carriers are emitted at ¢ > 0, the charge
Q;(¢) in the film decreases with t according to
dQ;(t)
—— = —euQult
dt t Q ( )7
where e,; is the emission rate of the ¢-th trap. From
eq. (22), Q.(t) is derived:

Q.(t) = Q:(0) exp(—eyt).

Therefore, the total charge Q(¢) in the film of unit area
is given by

(22)

(23)

(24)

Q@=Z@@,

which is rewritten using egs. (21) and (23) as
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Q) = Z gN,; exp (—egit) . (25)
Since charged carriers, which are emitted from traps, are
attributed to Jgi. (1),
dQ(t
Jais(t) = —% = z qNiey exp (—et) - (26)
Comparing eq. (26) with eq. (3), ¢Ny; corresponds to F;.
Therefore, N;; and e;; can be obtained using S(¢) as

N, = Sl (21)
q
and
1
€y — . (28)
tpeaki

4.2  Energetically distributed traps

In the case of energetically distributed traps, the
charge Q(0,e,) captured by traps per unit area is ex-
pressed as

Q(0,e,) = gN,(e). (29)

At t > 0, the charge Q(t, e,) in the film decreases with
t according to

W) - gt (30)
From eq. (30), Q(t,e,) is derived as
Q(t7 et) = Q(Oa et) exp(_ett)' (31)

Since 7 = 1/ey, the total charge Q(¢) in the film is given

by
at)= [aea (L), (32)
which is rewritten using egs. (29) and (31) as
Q) = / gN.(e) exp (—eit)d <;1‘> . (3

Since charged carriers, which are emitted from traps, are
attributed to Ju.(t),

Tunlt) = —%f) _ / aN.(e)e exp (—ect) d (%) .
(34

Comparing eq. (34) with eq. (9), ¢Ni(e.) corresponds to

F (7). Therefore, N,(e,) is obtained using S(t).

4.8 Emission processes from traps

Since it is easy to investigate the temperature depen-
dence of e, using this method, it can be judged whether
the carrier emission from traps is due to a tunneling pro-
cess or to a thermal process. If S(t) does not change with
temperature, this emission probably is due to a tunneling
process.

In the case of a thermal emission process, a trap level
(AE,) measured from the extended states can be evalu-
ated. The emission rate e, is given by® 2%

qAE,
e =viexp |~ |

where v, is the attempt-to-escape frequency and k is the

(35)
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Fig. 12. S(t) and Ny(AFE:) for voT? = 1012571,

Boltzmann constant. Here, v, is given by Newvy, 04, where
0, is the cross section .of traps, vy, is the thermal velocity
of carriers, and Ng is the effective density of states in
the extended states. Since v, and N¢ are proportional
to TY? and T?/?, respectively, v, is expressed as

(36)

Vy = 1/0T2,

where v is constant. Using the temperature dependence
of €ypear corresponding to the peak of S(t), v, can be
determined using the Arrhenius’ plot [i.e., In(epear/T?)—
1/T). In consequence, the relationships

2
AE, = L2 In (VOT ) (eV)
q

€4

(37)

and

g (cm™2-eV~1)

NlAB) = Nl g

(38)
are obtained.?®

Figure 11 shows N,(e,) and N,(AE,) for y1? =
102571, calculated using S(t) shown as the broken curve
in Fig. 4. Considering that e, = 1/7 and N.(e) =
F(7)/q, the obtained Ni(e;) is quite similar to F(7)
shown as the broken curve in Fig. 3.

On the other hand, since S(T') is rewritten as?®
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S(t) :/th(AEt) exp(1l)etexp(—et)d(AE,), (39)

N(AE,) is api)roximately given by'¥
S(t)
NJ(AE,) ~ ———
(AR kT exp(1) (40)
and
kT
AEt = —q— h’l (Voth) . (41)

Using the above relationships, S(¢) shown as the bro-
ken curve in Fig. 4 can be converted to N,(AE;) for
voT? = 10*2 s}, which is shown in Fig. 12. The peaks
of N,(AE,) in Fig. 12 are broader than the peaks of
N.(AE,) in Fig. 11 because of the approximation in
eq. (40). This analysis is useful for converting S(¢) into
approximate N, (AEy).

5. Conclusions

We propose a simple graphical method for determin-
ing the polarization and relaxation times of dipoles and
for determining the densities and emission rates of traps
in a dielectric film using the transient discharge current
of a capacitor which consists of the film between two
electrodes. Since the values can be evaluated using the
transient discharge current measured isothermally, it is
unnecessary to assume the temperature dependence of
time constants (i.e., relaxation times or emission rates)
in order to analyze these data, suggesting that the tem-
perature dependence of the time constants can be inves-
tigated in detail. When the transient discharge current
arises from the thermal-emission of charged carriers from
traps to the extended states, the energy levels of traps
can be evaluated from the temperature dependence of
emission rates. From the temperature dependence of
time constants, it is possible to understand the origin
of transient discharge currents, that is, depolarization of
dipoles or carrier emission from traps (thermal emission
process or tunneling process). Since many researchers
are intending to make use of dielectrics or ferroelectrics
as gate insulators in FET's and insulators of capacitors in
DRAM, this method will play an important role in the
investigation of dipoles and traps in these films.
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From eq. (37), the following relationship is obtained:
kT 1
d(AE;) = — -In10-d [Ioglo (—)] .
q €t
Since Jyis(t) is rewritten as
1
Jain(®) = / ali(e)er expl(~ent)d [logsg ()]
4

q

2 4
W00 (AF)

:/th(et)et exp(_ett)

:/th(AEt)ec exp(—ett)d(AEY),

the relationship expressed in eq. (38) is obtained:

q9

Ny(AE) = Ny(eg) ——r—o.
(AF) t(et)lenm



