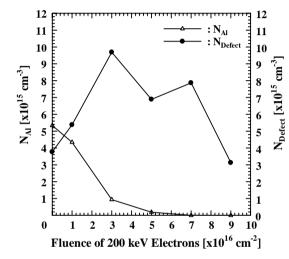
200 keV 電子線照射実験からの Al-doped 4H-SiC エピ膜中の深いアクセプタの起源の考察


Consideration of Origin of Deep Acceptor in Al-Doped 4H-SiC from Study of Irradiation of 200keV Electrons 大阪電気通信大学 ¹,日本原子力研究所 ² 蓑原 伸正 ¹,稲川 祐介 ¹,高橋 美雪 ¹,松浦 秀治 ¹,大島 武 ²,伊藤久義 ² Osaka Electro-Communication University ¹,JAERI ² N. Minohara ¹,Y. Inagawa ¹,H. Matsuura ¹,T. Ohshima ²,H. Itoh matsuura@isc.osakac.ac.jp http://www.osakac.ac.jp/labs/matsuura/

【はじめに】Al-doped 4H-SiC 中には浅い準位(Ev+0.20 eV)と深い準位(Ev+0.37 eV)にアクセプタが存在し、浅い準位は Al アクセプタであるが、深い準位の起源は不明である 1 。Al-doped 4H-SiC は照射エネルギー 200 keV の電子線照射によりエピ膜中の $^{\circ}$ に 原子だけが変位し、Al と結合している $^{\circ}$ に 原子が変位した場合、Al がアクセプタとして働かなくなると同時に、Al と $^{\circ}$ サイトの空格子($^{\circ}$ との複合欠陥(Alsi-Vc)が形成される可能性が指摘されている $^{\circ}$ ここでは、200 keV の電子線照射では $^{\circ}$ に 原子のみが変位することを利用し、異なる電子線照射量の Al-doped 4H-SiC エピ膜中の正孔密度の温度依存性 $^{\circ}$ p(T)を測定し、Al アクセプタ密度($^{\circ}$ NAI)及び深いアクセプタ密度($^{\circ}$ NDefect)の照射線量依存性から、深いアクセプタの起源を推測する。

【実験】エピ膜厚 10 μ m の Al-doped 4H-SiC に 照射エネルギー 200 keV の電子線 (照射量 1×10^{16} cm⁻²) を照射し、ホール測定を行った。以下、照射量を 2×10^{16} cm⁻² ずつ増加し同様にホール測定を行った。

【結果】図には電子線照射量の増加に伴う N_{Al} 及び N_{Defect} の変化を示す。照射量 3×10^{16} cm⁻² までは N_{Al} の減少量と N_{Defect} の増加量がほぼ同程度であった。照射量 5×10^{16} cm⁻² 以上では、Al アクセプタは枯渇し、一方 N_{Defect} は減少した。深いアクセプタを Al_{Si} - V_{C} と仮定すると、Al と結合している C が変位することにより、 Al_{Si} - V_{C} となる Al アクセプタが豊富に存在するときは Al_{Si} - V_{C} が増加し、一方 Al アクセプタが枯渇すると Al_{Si} - V_{C} も減少すると考えられる。以上から、深いアクセプタは Al_{Si} - V_{C} である可能性が高い。

1) H. Matsuura et al.: Physica B 376-377 (2006) 342.

