Reduction in Majority-Carrier Concentration in Lightly-Doped 4H-SiC Epilayers by Electron Irradiation

Hideharu Matsuura, Hideki Yanagisawa, Kozo Nishino, Takunori Mojiri, Shinobu Onoda¹, and Takeshi Ohshima¹ Osaka Electro-Communication University (matsuura@isc.osakac.ac.jp) and ¹Japan Atomic Energy Agency

Abstract. The mechanisms for the reduction in the hole concentration in lightly Al-doped p-type 4H-SiC epilayers by electron irradiation as well as in the electron concentration in lightly N-doped n-type 4H-SiC epilayers by electron irradiation are investigated.

In the p-type 4H-SiC epilayers, the temperature dependence of the hole concentration, p(T), is not changed by 100 keV electron irradiation, while the p(T) is decreased by 150 keV electron irradiation. The density of Al acceptors with energy level E_v +0.22 eV decreases with increasing fluence of 150 keV electrons, whereas the density of deep acceptors with energy level E_v +0.38 eV increases.

In the n-type 4H-SiC epilayers, the temperature dependence of the electron concentration, n(T), is decreased by 200 keV electron irradiation. The density of N donors located at hexagonal C-sublattice sites decreases significantly with increasing fluence of 200 keV electrons, whereas the density of N donors located at cubic C-sublattice site decreases slightly.

