Al-doped 4H-SiCエピ膜の正孔密度減少の 電子線照射エネルギー依存性

松浦秀治,鏡原聡,伊藤裕司 大阪電気通信大学

大島武,伊藤久義 日本原子力研究開発機構

第6回半導体の放射線照射効果研究会 2005年12月9日、日本原子力研究開発機構、高崎量子応用研究所

ホール効果測定から、p型SiCの正孔密度の温度依存性を 測定し、これを用いてアクセプタと欠陥の評価を行ってきた。

p-type Al-doped 4H-SiC epilayer Thickness: 10 um

> Ohmic contact Ti/Al

Substrate n⁺-type 4H-SiC wafer Size: 1x1 cm² Thickness: 376 um Resistivity: 0.02 Ohm cm

正孔密度の温度依存性

1. p型SiCの耐放射線性 2. 深い欠陥準位の起源

3

1000/T [K⁻¹]

 10^{14}

2

5

Free Carrier Concentration Spectroscopy (FCCS)

$$H(T, E_{\text{ref}}) \equiv \frac{p(T)^2}{(kT)^{5/2}} \exp\left(\frac{E_{\text{ref}}}{kT}\right)$$

FCCS信号はアクセプタ準位や欠陥準位に対応する 温度でピークを示す評価関数

 $\Delta E_i \cong kT_{\text{peak}i} + E_{\text{ref}}$ $N_i \cong kT_{\text{peak}i}H(T_{\text{peak}i}, E_{\text{ref}})\exp(-1)$ FCCSで求めた密度やエネルギー準位の検証は、これらの値を用いてp(T)をシミュレーションし、実験結果との一致する程度から調べることができる。

先ほど決定した準位の影響を除いた評価関数

異なるエネルギーでの電子線照射の影響

0.2 MeV電子線照射

結晶中の格子位置の原子を変位させるのに必要な 電子の最小エネルギー

0.2 MeV電子線照射の場合 C vacancy が生成 C 原子だけが変位 Si イ ン Si Si - C - SiC - Al - C \rightarrow \dot{C} $\dot{-}$ $\dot{A}l$ $\dot{-}$ \dot{C} Si - C - SiSi - C - SiAlsi-Vc 複合欠陥 が生成 1. Al アクセプタ密度 :減少 2. Al_{Si}-V_C 複合欠陥密度: 增加

0.2 MeV電子線照射の実験結果 1. N_{Al} が 5.2x10¹⁵ から 4.3x10¹⁵ cm⁻³に減少。 2. N_{Defect} が 3.5x10¹⁵ から 5.2x10¹⁵ cm⁻³に増加。

N_{Al}の減少量とN_{defect}の増加量とがほぼ等しい。

深い欠陥準位は Al_{si}-V_cの可能性がある。

深いエネルギー準位: Al_{si}-V_C V_cの形成を抑止する成長方法の確立 1. Alアクセプタ密度: 増加 2. 深い準位のアクセプタの減少

SiC中への効率的なAIドーピングが可能

2. Al_{Si}-V_C複合欠陥密度に関して

ESRでAl_{si}-V_c複合欠陥の存在は検出されている¹⁾。

 I.V. Ilyin, E.N. Mokhov and P. G. Baranov, "EPR of Deep Al and Deep B in Heavily Al-doped as Grown 4H-SiC", Materials Science Forum Vol. 353-356 (2001) pp. 521-524.

 $Alor - ズ量が10^{20} cm^{-3} O4H-SiCを用いて Al_{Si}-V_C複合欠陥の存在を調べている。 密度については述べていない。$

1. 0.2 MeV電子線照射において、AIアクセプタ密 度は減少したが、深い欠陥密度は増加した。 2.0.5 MeV以上の電子線照射において、AIアクセ プタ密度は激減し、深い欠陥密度は微減した。 3.0.2 MeV 電子線照射では C 原子だけが格子位 置から変位するので、AIアクセプタと結合してい るC原子が変位した場合、AIアクセプタ密度が減 少し、Al_{si}-V_C複合欠陥密度が増加すると考えら れ、実験結果と良く一致する。

p(T)を用いてFCCSから求めた結果

	電子線照射前	0.2 MeV	4.6 MeV
$\Delta E_{\rm Al}$ [meV]	203 (203)	217	206
$N_{\rm Al}$ [x10 ¹⁵ cm ⁻³]	5.2 (6.2)	4.3	0.82
ΔE_{Defect} [meV]	357 (365)	363	383
N_{Defect} [x10 ¹⁵ cm ⁻³]	3.5 (4.2)	5.2	3.5
$N_{\rm comp}$ [x10 ¹⁵ cm ⁻³]	0.047 (0.037)	0.21	0.74

(....) 内の数値は 4.6 MeV電子線照射前の値。 N_{comp}はさらに深い欠陥密度。

さらに深い欠陥による p(T) への影響は無視できる。