Relationship between defects induced by irradiation and reduction of hole concentration in Al-doped 4H-SiC

Hideharu Matsuura, Sou Kagamihara, Yuji Itoh Osaka Electro-Communication University

Takeshi Ohshima and Hisayoshi Itoh Japan Atomic Energy Research Institute

International Conference on Defects in Semiconductors(ICDS-23) 25-29 July, 2005, Awaji Island, Hyogo, Japan

Background of our study

Investigation of acceptors and defects in Al-doped 4H-SiC from p(T) obtained by Hall-effect measurements

p-type Al-doped 4H-SiC epilayer Thickness: 10 um

> Ohmic contact Ti/Al

Substrate n⁺-type 4H-SiC wafer Size: 1x1 cm² Thickness: 376 um Resistivity: 0.02 Ohm cm

Temperature dependence of hole concentration

Lightly Al-doped 4H-SiC epilayer

Temperature dependence of hole concentration

Temperature dependence of hole concentration

Free Carrier Concentration Spectroscopy (FCCS)

$$H(T, E_{\rm ref}) \equiv \frac{p(T)^2}{(kT)^{5/2}} \exp\left(\frac{E_{\rm ref}}{kT}\right)$$

The FCCS signal has a peak at the temperature corresponding to each acceptor level or defect level. $\Delta E_i \cong kT_{\text{peak}i} + E_{\text{ref}}$ $N_i \cong kT_{\text{peak}i} \overline{H(T_{\text{peak}i}, E_{\text{ref}})} \exp(-1)$ In order to verify them, the p(T) simulated with the densities and energy levels determined by FCCS is always compared with the experimental p(T).

Osaka Electro-Communication University Relationship between N_{Al} and N_{Defect} N_{A1}: Al acceptor density 10^{16} N_{Defect} [cm⁻³] N_{Defect}: Deep defect density Unirradiated p-type 4H-SiC 10^{15} epilayers 10^{15} 10^{16} N_{A1} [cm⁻³]

Relationship between N_{Al} and N_{Defect}

Motivation of our study

What is the origin of the deep defect?
 Why was the p(T) reduced by irradiation?

Irradiation of electrons with several energies

The reason why the N_{Al} is reduced by irradiation

Minimum electron energy required for displacement of atom

Before irradiation

With irradiation of 0.2 MeV electrons

0.2 MeV electrons at 1.0x10¹⁶ cm⁻²

With irradiation of 0.2 MeV electrons

Results from p(T) by FCCS

	Before irradiation	0.2 MeV	4.6 MeV
$\Delta E_{\rm Al}$ [meV]	203 (203)	217	206
$N_{\rm Al}$ [x10 ¹⁵ cm ⁻³]	5.2 (6.2)	4.3	0.82
ΔE_{Defect} [meV]	357 (365)	363	383
N_{Defect} [x10 ¹⁵ cm ⁻³]	3.5 (4.2)	5.2	3.5
$N_{\rm comp}$ [x10 ¹⁵ cm ⁻³]	0.047 (0.037)	0.21	0.74

Defect means a defect-related acceptor.

 (....) represents data for before 4.6 MeV electron irradiation.
 N_{comp} represents the density of hole traps deeper than this defect level and donor-like defect.

The effect of hole traps on p(T) is negligible.

Change of relationship between N_{Al} and N_{defect} by irradiation

With 0.2 MeV electron irradiation

$\begin{array}{c} \text{Si}=\text{C}-\text{Si}\\ \text{I}=\text{I}=\text{I}\\ \text{C}-\text{Al}=\text{C}\\ \text{I}=\text{I}=\text{I}\\ \text{Si}=\text{C}-\text{Si} \end{array} \xrightarrow{\text{C} \text{ is only displaced}} \begin{array}{c} \text{Si}\neq \tilde{\text{Si}}\\ \text{I}=\text{I}=\text{I}\\ \text{C}\neq \text{Al}=\text{C}\\ \text{I}=\text{I}=\text{I}\\ \text{Si}=\text{C}-\text{Si} \end{array} \xrightarrow{\text{Si}=\text{C}-\text{Si}} \begin{array}{c} \text{Si}=\text{C}+\text{Si}\\ \text{I}=\text{I}=\text{I}\\ \text{Si}=\text{C}-\text{Si} \end{array} \xrightarrow{\text{Si}=\text{C}-\text{Si}} \begin{array}{c} \text{Si}=\text{C}+\text{Si}\\ \text{I}=\text{I}=\text{I}\\ \text{Si}=\text{C}-\text{Si} \end{array}$

Al acceptor density should be decreased
 Al_{Si}-V_C complex density should be increased

With 0.2 MeV electron irradiation

N_{Al} is decreased from 5.2x10¹⁵ to 4.3x10¹⁵ cm⁻³
 N_{Defect} is increased from 3.5x10¹⁵ to 5.2x10¹⁵ cm⁻³

The decrement of N_{Al} is nearly equal to the increment of N_{Defect}

The deep defect is most likely $Al_{Si}-V_C$

With >0.5 MeV electron irradiation $S_i - S_i$ $C - A_1 - C$ 1. N_{A_1} is decreased I I I Z N_{Defect} is increased Si -C -SiSi-C-Si and C - Al - CSi-C-Si $\mathbf{Y}_{\mathbf{C}}^{\mathbf{I}} = \mathbf{I}_{\mathbf{C}}^{\mathbf{I}} \mathbf{I}$. \mathbf{N}_{Al} is decreased Si - C - Si2. N_{Defect} is decreased Si - C - Si1. N_{A1} should be decreased significantly

2. N_{Defect} might be decreased slightly These are in good agreement with the results

Conclusion

With 0.2 MeV electron irradiation, the Al acceptor density was decreased, while the unknown deep defect density was increased.

Since a 0.2 MeV electron could displace only C into an interstitial site, the Al acceptor density was decreased due to the displacement of its nearest neighbor C, which resulted in an increase in the density of Al_{Si} -V_C complexes.

This suggests that the unknown deep defect in lightly Al-doped 4H-SiC epilayers is the $Al_{Si}-V_{C}$ complex.

Free Carrier Concentration Spectroscopy (FCCS)

$$H(T, E_{\rm ref}) \equiv \frac{p(T)^2}{(kT)^{5/2}} \exp\left(\frac{E_{\rm ref}}{kT}\right)$$

The FCCS signal has a peak corresponding to each acceptor level or defect level.

 $\Delta E_i \cong kT_{\text{peak}i} + E_{\text{ref}}$

$N_i \cong kT_{\text{peak}i}H(T_{\text{peak}i}, E_{\text{ref}})\exp(-1)$

Free Windows Application software:

See at Web site http://www.osakac.ac.jp/labs/matsuura/

Web site http://www.osakac.ac.jp/labs/matsuura/

The FCCS signal theoretically-derived $H(T, E_{\text{ref}}) = \sum_{i} \frac{N_{i}}{kT} \exp\left(-\frac{\Delta E_{i} - E_{\text{ref}}}{kT}\right) I(\Delta E_{i})$ $-\frac{N_{\rm V0}N_{\rm comp}}{kT}\exp\left(\frac{E_{\rm ref}-\Delta E_{\rm F}}{kT}\right)$

The function

$$\frac{N_i}{kT} \exp\left(-\frac{\Delta E_i - E_{\rm ref}}{kT}\right)$$

has a peak value of

$$\frac{N_i}{kT_{\text{peak}i}} \exp(-1)$$

at
$$\frac{\Delta E_i - E_{\rm ref}}{k}$$

Results from p(T) by FCCS

		Before irradiation	0.2 MeV	4.6 MeV
$\Delta E_{ m Al}$	[meV]	203 (203)	217	206
$N_{ m Al}$	$[x10^{15} \text{ cm}^{-3}]$	5.2 (6.2)	4.3	0.82
ΔE_{Defect}	[meV]	357 (365)	363	383
$N_{ m Defect}$	[x10 ¹⁵ cm ⁻³]	3.5 (4.2)	5.2	3.5
$N_{\rm comp}$	$[x10^{15} \text{ cm}^{-3}]$	0.047 (0.037)	0.21	0.74

Defect means a defect-related acceptor.

(....) represents data for before 4.6 MeV electron irradiation. N_{comp} represents the density of hole traps deeper than 360 meV and donor-like defect.