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Abstract 
The influence of the excited states of acceptors on the hole 

concentration in p-type SiC is investigated theoretically and 
experimentally.   

Using the temperature dependence of the hole concentration 
)(Tp  in a p-type 6H-SiC wafer, a distribution function suitable for 

deep acceptors is examined.   
From the discussion, it is found that we cannot ignore the 

influence of the excited states on )(Tp  as well as the ensemble 
average of the ground and excited state levels of the acceptor when 
the acceptor level is deep. 



1. Reported Distribution Function for Electrons 
 
1.1 Fermi-Dirac distribution function, which does not include the 

influence of the excited states of the acceptor 
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1.2 Distribution function, which include the influence of the excited states 
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2. Acceptor Level and Excited State Levels 
 
2.1 Excited state levels (hydrogenic dopant model) 
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2.2 Acceptor level 

CCC1A EEE +∆=∆  
  CCCE : the energy induced due to central cell correction 

2.3 In the case of 6H-SiC 
1361 =∆E  meV 

0.342 =∆E  meV, 1.153 =∆E  meV, 5.84 =∆E  meV,  
4.55 =∆E  meV,  8.36 =∆E  meV,  8.27 =∆E  meV 



3. Theoretical Consideration of Distribution 
Function 

3.1 Number of configurations in allowed bands or a band gap 
A. In allowed bands 

Multiplicity function iWB  for the ( )iEn ∆h  holes arranged in the 
( )iED ∆h  degenerate states at iE∆  
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B. In a band gap 
(1) Multiplicity function 1AW  for the An  holes arranged in the AN  

acceptors 
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(2) Multiplicity function 2AW  for the ground state and the excited 
states of the acceptor 
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(3) Multiplicity function 3AW  for degenerate spin-up and spin-down 
states 
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nW =  

(4) Multiplicity function 4AW  for degenerate heavy and light hole 
valence bands 
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     Multiplicity function for acceptors 
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3.2 Ensemble average exE  of the ground and excited state levels of the 
acceptor 
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3.3 Average acceptor level 

exAA EEE −∆=∆  
 

3.4 Total number W  of configurations of the system 
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3.5 Thermal Equilibrium configuration of the system 
 

The thermal equilibrium configuration of the system occurs 
when the entropy 

WkS ln=  
is maximum under the conservation laws; 

total number of holes; ( )∑ =∆+=
i

iEnnn constanthAtotalh,  

total energy of holes;  ( ) constanthAAtotal =∆∆+∆= ∑
i

ii EnEnEE  



3.6 Distribution function for electrons derived under these conditions 
A. In the allowed bands 
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B. In the band gap 
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3.7 Assumptions used in the other distribution functions 
 

A. Fermi-Dirac distribution function ( )AFD Ef ∆  
1=r , 11 =g , 0ex =E  

 
B. Reported distribution function ( )Acon Ef ∆  
     0ex =E  



4. Experimental 
 

Sample: p-type 6H-SiC wafer 
       Resistivity  4.1~  Ωcm 
       Thickness    42.0  mm 
       Size         11×  cm2 
Hall-effect measurement 
       Temperatures  100 K ~ 380 K 
       Magnetic field 4.1  T 



5. Results and Discussion 
5.1 Least-squares fit of the 

neutral equation to )(Tp  
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Fig. 1  Experimental and simulated )(Tp  



5.2 Free Carrier Concentration Spectroscopy (FCCS) 
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From the peak of ( )ref, ETH , 
the values of AE∆ , AN  and 

comN  can be determined. 
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Fig. 2 Experimental and simulated ),( refETH  
 



5.3 Obtained results 
 
 Fermi-Dirac 

( )AFD Ef ∆  
Reported 

( )Acon Ef ∆  
Proposed 
( )AEf ∆  

AN   [cm-3] 19100.3 ×   20102.2 ×   18109.1 ×    
AE∆  [meV] 182   205   189    

comN  [cm-3] 17104.8 ×   18107.2 ×   16104.3 ×    
 
The values of all the AE∆  are considered to be reasonable. 
 

The value of ( comA NN − ) to be expected is less than 18105×  cm-3. 

 
The proposed ( )AEf ∆  is considered to be suitable for deep acceptors. 



5.4 Comparison  

 
The proposed ( )AEf ∆  is considered to be suitable for deep acceptors. 
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Fig. 3  Experimental and simulated 

),( refETH  
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Fig.4  Experimental and simulated 
)(Tp  



5.5 Temperature dependences of ⎟
⎠
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The average acceptor level AE∆  
decreases with T . 
 

Since ⎟
⎠

⎞
⎜
⎝

⎛−
kT
Eexexp  decreases with 

T  rapidly, the acceptors are apt to 
be negatively ionized at moderate 
temperatures. 
 
The reliable AN  is obtained. 
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Fig. 5  Temperature dependences 
 of )/exp( ex kTE− , FE∆  and AE∆ . 



6. Summary 
 

We theoretically derived the distribution function ( )AEf ∆  considering the 
influence of the excited states on )(Tp , in which the ensemble average exE  
of the ground and excited state levels of the acceptor was introduced. 

Using three kinds of distribution functions [ ( )AFD Ef ∆ , ( )Acon Ef ∆  , 
( )AEf ∆ ], we analyzed )(Tp  in p-type 6H-SiC experimentally obtained by 

Hall-effect measurements. 
It is found that FCCS is more suitable for investigating the influence of the 

excited states of the acceptor in SiC than the least-squares fit of the neutrality 
equation to )(Tp . 

Moreover, it is considered that the proposed distribution function ( )AEf ∆  
is suitable for deep acceptors. 




