Influence of Excited States of Deep Acceptors on Hole Concentration in SiC

Hideharu Matsuura

Department of Electronics, Osaka Electro-Communication University, Hatsu-cho 18-8, Neyagawa, Osaka 572-8530, Japan matsuura@isc.osakac.ac.jp
Experimental acceptor levels ΔE_{A} in SiC , measured from the valence band E_{V}, are reported to be deeper than 150 meV . Moreover, the ground and first excited state levels of acceptors in SiC , calculated by hydrogenic acceptor [$\Delta E_{r}=13.6\left(m^{*} / \varepsilon_{s}^{2} r^{2}\right) \mathrm{eV}$], are 136 meV and 34 meV , respectively. The experimental ΔE_{A} is deeper than ΔE_{1} because of central cell corrections, while $\Delta E_{r}(r \geq 2)$ are considered to be reasonable, and should affect the hole concentration $p(T)$. Using three kinds of distribution functions, we theoretically and experimentally investigate the influence of the excited states on $p(T)$.

The proposed distribution function for electrons is expressed as

$$
\begin{equation*}
f\left(\Delta E_{\mathrm{A}}, n, \overline{E_{\mathrm{ex}}}\right)=\frac{1}{1+4 \exp \left(-\frac{\overline{E_{\mathrm{ex}}}}{k T}\right) \cdot\left\{g_{1} \exp \left(\frac{\Delta E_{\mathrm{A}}-\Delta E_{\mathrm{F}}}{k T}\right)+\sum_{r=2}^{n} g_{r} \exp \left(\frac{\Delta E_{r}-\Delta E_{\mathrm{F}}}{k T}\right)\right\}} \tag{1}
\end{equation*}
$$

where ΔE_{F} is the Fermi level measured from E_{V}, g_{r} is the $(r-1)$-th excited state degeneracy factor, and n is the highest excited state, which we consider in analysis. Here, the average acceptor level $\overline{\Delta E_{\mathrm{A}}}$ is expressed as $\overline{\Delta E_{\mathrm{A}}}=\Delta E_{\mathrm{A}}-\overline{E_{\text {ex }}}$, and $\overline{E_{\text {ex }}}$ is the ensemble average of the ground and excited state levels, which increases with T. The Fermi-Dirac distribution function corresponds to $f\left(\Delta E_{\mathrm{A}}, 1,0\right)$ and the conventional function is $f\left(\Delta E_{\mathrm{A}}, n, 0\right)$.

Using p-type $6 \mathrm{H}-\mathrm{SiC}$ wafer, $p(T)$ was obtained by Hall-effect measurements. Using Free Carrier Concentration Spectroscopy (FCCS), ΔE_{A}, the acceptor density N_{A} and the compensating density $N_{\text {com }}$ were determined, and are shown in Table 1. Figure 1 shows the $p(T)-1 / T$ curves, and Fig. 2 displays the FCCS curve given by $H\left(T, E_{\text {ref }}\right) \equiv p(T)^{2} \exp \left(E_{\text {ref }} / k T\right) /(k T)^{5 / 2} \quad, \quad$ where the simulation results mean the curves simulated using Table 1.

In $f\left(\Delta E_{\mathrm{A}}, 1,0\right)$, although the simulated $p(T)$ is in agreement with the experimental $p(T)$, the simulated $H\left(T, E_{\text {ref }}\right)$ is not, indicating that the excited states should affect $p(T)$. In $f\left(\Delta E_{\mathrm{A}}, n, 0\right)$, the density of holes bound to acceptors increases, which results in the unreasonable high N_{A}. In our case, there are good coincidences between the experimental data and simulation results in Fig. 1 as well as in Fig. 2, and N_{A} and ΔE_{A} are considered to be reasonable.

In summary, the influence of the excited states on $p(T)$ should be considered, and the distribution function used in deep acceptors should be $f\left(\Delta E_{\mathrm{A}}, n, \overline{E_{\text {ex }}}\right)$.
Table 1 Results determined by FCCS

	$f\left(\Delta E_{\mathrm{A}}, 1,0\right)$	$f\left(\Delta E_{\mathrm{A}}, 10,0\right)$	$f\left(\Delta E_{\mathrm{A}}, 10, \overline{E_{\mathrm{ex}}}\right)$
$N_{\mathrm{A}}\left[\mathrm{cm}^{-3}\right]$	2.95×10^{19}	2.19×10^{20}	1.91×10^{18}
$\Delta E_{\mathrm{A}}[\mathrm{meV}]$	182	205	189
$N_{\text {com }}\left[\mathrm{cm}^{-3}\right]$	8.35×10^{17}	2.65×10^{18}	3.37×10^{16}

Fig. 1 Experimental and simulation results of $p(T)$

Fig. 2 Experimental and simulation results of $\mathrm{H}\left(\mathrm{T}_{\mathrm{E}} \mathrm{F}_{\mathrm{te}}\right)$

