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Abstract. The influence of the excited states of a substitutional dopant
(donor or acceptor) on the majority-carrier concentration in a wide-bandgap
semiconductor is investigated theoretically and experimentally, because acceptor
levels ∆EA in SiC, GaN and diamond were reported to be deeper than 150
meV. In order to accurately determine the values of ∆EA, the acceptor density
NA and the compensating density Ncomp in Al-doped p-type 4H–SiC using the
temperature dependence p(T ) of the hole concentration obtained from Hall-effect
measurements, a distribution function including this influence is theoretically
derived. Here, an ensemble average Eex of the ground and excited state levels
of the acceptor is newly introduced into the distribution function. It is found
that a curve-fitting procedure, in which we proceed to search for NA, ∆EA and
Ncomp to fit a curve to the experimental p(T ) by a method of least squares, is not
suitable for investigating this influence. It is experimentally demonstrated that
free-carrier concentration spectroscopy (FCCS), which we have proposed, can
investigate this influence in detail. By using FCCS and the distribution function
proposed here, the reliable values of NA, ∆EA and Ncomp can be obtained.

1. Introduction

Excited states of a substitutional dopant (donor or acceptor) in a semiconductor have been
theoretically discussed using the hydrogenic dopant model [1]–[3], and the existence of the
excited states of the dopants (e.g., B, P) in Si or Ge has been experimentally confirmed using
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infrared absorption measurements [1, 4, 5]. However, the influence of the excited states on the
majority-carrier concentration in Si or Ge has not been confirmed because the excited state levels
of the dopants in Si or Ge are too shallow.

Since the dielectric constants of wide-bandgap semiconductors such as SiC, GaN and
diamond are lower than those of Si and Ge, the energy levels of substitutional dopants become
deep according to the hydrogenic dopant model. For example, the energy levels∆EA of acceptors
(e.g., B or Al in SiC, Mg in GaN and B in diamond), measured from the top EV of the valence
band, were reported to be deeper than 150 meV from photoluminescence (PL) studies [6]–
[9]. Moreover, the theoretical first excited state level of the acceptor in the wide-bandgap
semiconductor is expected to be close to the acceptor level (45 meV) of B in Si, indicating
that the excited states of the acceptor in the wide-bandgap semiconductor must affect the hole
concentration.

The conventional occupation probability function fconv(ED) for electrons bound to donors
in a forbidden band, which includes the influence of the excited states of the donor, is given
by [10]–[12]

fconv(ED) =
1

1 + 1

g

[
g1 exp

(
EF−ED

kBT

)
+
∑

r=2 gr exp
(

EF−Er
kBT

)] , (1)

while the Fermi–Dirac (FD) occupation probability function fFD(ED) for electrons bound to
donors in the forbidden band, which does not include the influence of the excited states of the
donor, is given by

fFD(ED) =
1

1 + 1
g
exp

(
−EF−ED

kBT

) , (2)

where ED is the donor level that is the sum of the theoretical ground-state level E1 and the energy
ECCC induced due to central cell corrections (CCC) [13], Er is the (r − 1)th excited state level,
g is the spin degeneracy factor (g = 2) for donors, g1 is the ground-state degeneracy factor,
gr is the (r − 1)th excited state degeneracy factor, kB is the Boltzmann constant and T is the
absolute temperature. In the following sections, the occupation probability function is called a
distribution function. In n-type semiconductors, by comparing equation (1) with (2), the electron
concentration n(T ) simulated using fconv(ED) should become lower than n(T ) using fFD(ED).
As is clear from equation (1), fconv(ED) makes the ionization efficiency of the dopant lower
even at high temperatures than fFD(ED) does. This situation in p-type semiconductors is also
the same.

In Al-doped SiC [14]–[17], using the FD distribution function, the values of ∆EA, the
acceptor density NA and the compensating density Ncomp were determined by a least-squares fit
of the charge neutrality equation to the temperature dependence p(T ) of the hole concentration
experimentally obtained from Hall-effect measurements, referred to as a conventional curve-
fitting procedure here. However, NA values determined by the conventional curve-fitting
procedure were much higher than the Al concentrations determined by secondary ion mass
spectroscopy (SIMS) [14]–[16], suggesting that NA determined by the conventional curve-fitting
procedure are not reliable. The situation in Mg-doped p-type GaN was also the same [18]. When
the influence of the excited states of the acceptor on p(T ) is considered using the conventional
distribution function, the NA value required to meet the experimental p(T ) is higher than NA

obtained using the FD distribution function. Therefore, when we consider the influence of the
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excited states of the acceptor on p(T ), it is necessary to newly introduce a distribution function
including this influence, which leads NA to be appropriate.

On the other hand, we have proposed and tested a graphical peak analysis method
for determining the densities and energy levels of several dopant species and traps
without any assumption regarding dopant species and traps, called free-carrier concentration
spectroscopy (FCCS) [17]–[23]. Since the FCCS signal obtained from the experimental p(T )
has a peak at the temperature corresponding to each energy level, from each peak the density
and energy level of the corresponding dopant or trap can be determined accurately. By FCCS
using the FD distribution function, the densities of a 95 meV hole trap and a 191 meV hole trap
could be determined in p-type Si irradiated with 10MeV protons [20], while those of a 65 meV
donor and a 124 meV donor could be determined in N-doped n-type 4H–SiC [21]. Moreover, it
is easy to make use of any distribution function in the FCCS analysis.

In this paper, we theoretically derive a distribution function suitable for deep dopants,
and then shortly describe the conventional curve-fitting procedure and the FCCS analysis.
Then, we analyse p(T ) in Al-doped p-type 4H–SiC experimentally obtained from Hall-effect
measurements, using the distribution function proposed here as well as the FD distribution
function and the conventional distribution function.

2. Theoretical consideration of the distribution function

2.1. The number of configurations of the system

Electrons and holes in semiconductors are fermions, which obey the Pauli exclusion principle.
We consider the number D(Ei) of degenerate states per unit volume at a given energy Ei in
allowed bands and the number n(Ei) of electrons per unit volume at Ei. The multiplicity
function WBi for the n(Ei) electrons arranged in the D(Ei) states is given by [24]

WBi =
D(Ei)!

[D(Ei)− n(Ei)]! · n(Ei)!
. (3)

In a forbidden band, on the other hand, the multiplicity function for nD electrons arranged in
ND donors is quite different from equation (3), where ND is the number of donors per unit volume
and nD is the number of electrons bound to donors per unit volume. When spin degeneracy as
well as the existence of the excited states of the donor is neglected, the multiplicity function WD1

for the nD electrons arranged in the ND donors is given by

WD1 =
ND!

(ND − nD)! · nD!
. (4)

In a neutral donor, only an excess electron is bound to one state of the ground state and the
excited states of the donor. The partition function for one electron arranged in them is expressed
as

g1 +
∑
r=2

gr exp
(
−Er − ED

kBT

)
. (5)

For the nD electrons, therefore, the multiplicity function WD2 is given by

WD2 =
[
g1 +

∑
r=2

gr exp
(
−Er − ED

kBT

)]nD

. (6)
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On the other hand, an ensemble average Eex of the ground and excited state levels of the donor
is given by

Eex =

∑
r=2(Er − ED)gr exp

(
−Er−ED

kBT

)
g1 +

∑
r=2 gr exp

(
−Er−ED

kBT

) , (7)

and then an average donor level ED is expressed as

ED = ED + Eex. (8)

Each state of the ground state and the excited states, furthermore, consists of a spin-up state
and a spin-down state. When the difference in energy between the two states under a magnetic
field is denoted by ∆Espin, the partition function for one electron arranged in the two states is
expressed as

1 + exp
(
−∆Espin

kBT

)
. (9)

For the nD electrons, therefore, the multiplicity function WD3 is given by

WD3 =
[
1 + exp

(
−∆Espin

kBT

)]nD

. (10)

When the magnetic field is not applied to the semiconductor (∆Espin = 0),

WD3 = 2nD . (11)

Therefore, the multiplicity function WD for the nD electrons arranged in the ND donors is
expressed as

WD = WD1WD2WD3. (12)

Finally, the total number W of configurations of the system is obtained from the product of
these multiplicities as

W = WD
∏
i

WBi. (13)

2.2. Thermal equilibrium configuration

The thermal equilibrium configuration occurs when the entropy

S = kB lnW (14)

becomes a maximum value under the following two conservation laws; (1) the total number
ntotal of electrons in the system is conserved, that is,

ntotal = nD +
∑

i

n(Ei) = const (15)

and (2) the total energy Etotal of electrons in the system is conserved, i.e.

Etotal = EDnD +
∑

i

Ein(Ei) = const. (16)

We proceed to find the thermal equilibrium configuration by making lnW extreme under
equations (15) and (16). According to the method of Lagrange multipliers, the maximization of
lnW is given by

d(lnW ) + α dntotal + β dEtotal = 0, (17)
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where α and β are the Lagrange multipliers. When Stirling’s approximation

lnN ! ∼ N(lnN − 1) (18)

is applied to lnW where N is the large integral number, performing the differentiations of
equation (17) gives{
ln
{
2
(

ND

nD
− 1

)[
g1 +

∑
r=2

gr exp
(
−Er − ED

kBT

)]}
+ α+ βED

}
dnD

+
∑

i

(
ln
[
D(Ei)
n(Ei)

− 1
]
+ α+ βEi

)
dn(Ei) = 0, (19)

and hence the following equations are obtained:

ln
[
D(Ei)
n(Ei)

− 1
]
+ α+ βEi = 0 (20)

for electrons in the allowed bands, and

ln
{
2
(

ND

nD
− 1

)[
g1 +

∑
r=2

gr exp
(
−Er − ED

kBT

)]}
+ α+ βED = 0 (21)

for electrons bound to donors in the forbidden band. Finally, the distribution functions are
derived as

f(Ei) =
n(Ei)
D(Ei)

=
1

1 + exp(−α − βEi)
(22)

for electrons in the allowed bands, and

f(ED) =
nD

ND
=

1
1 + 1

2 exp(α+βED)
[
g1+
∑

r=2 gr exp
(

− Er−ED
kBT

)] (23)

for electrons bound to donors in the forbidden band.

2.3. Determination of α and β

From equation (17), the relationship between lnW , ntotal and Etotal is described as

d(lnW ) = −α dntotal − β dEtotal, (24)

while the entropy is rewritten as

dS = kB d(lnW ). (25)

Therefore, the relationship is derived as follows:

dEtotal = −α

β
dntotal − 1

kβ
dS. (26)

From thermodynamics, on the other hand, the relationship between Etotal, S and the free
energy F is given as

dEtotal = dF + T dS. (27)

By comparing equation (26) with (27),

β = − 1
kBT

(28)
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and

α =
1

kBT

dF
dntotal

(29)

are then obtained. Since dF/dntotal is the chemical potential [25], called the Fermi level EF in
this paper,

α =
EF

kBT
. (30)

2.4. Distribution function for electrons

Since the energy level Ei is considered to be continuously distributed in the allowed bands, the
distribution function is described as

f(E) =
1

1 + exp
(
−EF−E

kBT

) (31)

for electrons in the allowed bands, which coincides with the FD distribution function in the
allowed bands. On the other hand, it is expressed as

f(ED) =
1

1 + 1

2 exp
(

EF−ED
kBT

)[
g1+
∑

r=2 gr exp
(

− Er−ED
kBT

)] (32)

for electrons bound to donors in the forbidden band.

2.5. The hydrogenic donor case

A neutral donor can be approximately described as a hydrogen atom, that is, a positively charged
ionized impurity and an electron in orbit about the impurity. In this case, the (r − 1)th excited
state level ∆Er, measured from the bottom EC of the conduction band, is given by [1]–[3]:

∆Er =
q4m∗

8h2ε2
0ε

2
sr

2

= 13.6
m∗

m0ε2
s

1
r2 eV, (33)

where q is the electron charge, m∗ is the electron effective mass in the semiconductor, m0 is the
free-space electron mass, h is Planck’s constant, εs is the semiconductor dielectric constant and
ε0 is the free-space permittivity. On the other hand, a donor level ∆ED, measured from EC, is
given by

∆ED = ∆E1 + ECCC. (34)

The (r − 1)th excited state degeneracy factor is given by [1, 12]

gr = r2. (35)

When all the energy levels are measured from EC (e.g.,∆EF = EC − EF), the distribution
functions are rewritten as

f(∆E) =
1

1 + exp
(

∆EF−∆E
kBT

) (36)
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for electrons in the allowed bands, and

f(∆ED) =
1

1 + 1

2 exp
(

− Eex
kBT

)[
g1 exp

(
∆ED−∆EF

kBT

)
+
∑

r=2 gr exp
(

∆Er−∆EF
kBT

)] (37)

for electrons bound to donors in the forbidden band, where

Eex =

∑
r=2(∆ED −∆Er)gr exp

(
−∆ED−∆Er

kBT

)
g1 +

∑
r=2 gr exp

(
−∆ED−∆Er

kBT

) . (38)

Therefore, an average donor level ∆ED is expressed as

∆ED = ∆ED − Eex. (39)

When the influence of the excited states is ignored (i.e. r = 1 and Eex = 0), equation (37)
coincides with the FD distribution function for electrons bound to donors in the forbidden band:

fFD(∆ED) =
1

1 + 1
2 exp

(
∆EF−∆ED

kBT

) . (40)

When the ensemble average of the ground and excited state levels of the donor is not considered
(i.e. Eex = 0), equation (37) coincides with the conventional distribution function

fconv(∆ED) =
1

1 + 1

2
[
g1 exp

(
∆ED−∆EF

kBT

)
+
∑

r=2 gr exp
(

∆Er−∆EF
kBT

)] . (41)

2.6. The hydrogenic acceptor case

Different from the conduction band, there are two degenerate valence bands (i.e. a light-hole
band and a heavy-hole band), indicating that there is an acceptor state for the light-hole band as
well as an acceptor state for the heavy-hole band. Therefore, the multiplicity WA4 for one hole
arranged in the two acceptor states is given by

WA4 = 2nA , (42)

wherenA is the number of holes bound to acceptors per unit volume. In the same way as illustrated
for the hydrogenic donor, the distribution function fh(∆EA) for holes bound to acceptors in the
forbidden band is expressed as

fh(∆EA) =
1

1 + 1

4 exp
(

− Eex
kBT

)[
g1 exp

(
∆EA−∆EF

kBT

)
+
∑

r=2 gr exp
(

∆Er−∆EF
kBT

)] , (43)

where all the energy levels are measured from EV (e.g., ∆EF = EF − EV),

∆EA = ∆E1 + ECCC, (44)

and

Eex =

∑
r=2

(
∆EA −∆Er

)
gr exp

(
−∆EA−∆Er

kBT

)
g1 +

∑
r=2 gr exp

(
−∆EA−∆Er

kBT

) . (45)
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Therefore, the distribution function f(∆EA) for electrons in the forbidden band, which
corresponds to acceptors, is derived as

f(∆EA) = 1− fh(∆EA)

=
1

1 + 4 exp
(
− Eex

kBT

)[
g1 exp

(
∆EA−∆EF

kBT

)
+
∑

r=2 gr exp
(

∆Er−∆EF
kBT

)] . (46)

On the other hand, an average acceptor level ∆EA is expressed as

∆EA = ∆EA − Eex. (47)

The FD distribution function for electrons in the forbidden band, which corresponds to
acceptors, is expressed as

fFD(∆EA) =
1

1 + 4 exp
(

∆EA−∆EF
kBT

) , (48)

while the conventional distribution function for electrons in the forbidden band, which
corresponds to acceptors, is described as

fconv(∆EA) =
1

1 + 4
[
g1 exp

(
∆EA−∆EF

kBT

)
+
∑

r=2 gr exp
(

∆Er−∆EF
kBT

)] . (49)

3. Procedures for determining the dopant density and dopant level

3.1. Conventional curve-fitting procedure

Since p-type 4H–SiC is discussed in the following sections, the majority carriers are holes. In
nondegenerate semiconductors including one sort of acceptor, the following simple curve-fitting
procedure can be applied.

Using∆EF and the effective density NV(T ) of states in the valence band, p(T ) is given by

p(T ) = NV(T ) exp
(
−∆EF

kBT

)
, (50)

where

NV(T ) = NV0k
3/2
B T 3/2 (51)

and

NV0 = 2
(
2πm∗

h2

)3/2

. (52)

When the distribution function in the forbidden band is considered to be fFD(∆EA), p(T ) is
given by

p(T ) =
NA

1 + 4 exp
(

∆EA−∆EF
kBT

) − Ncomp, (53)

which is called the charge neutrality equation, where Ncomp is the compensating density including
the donor densities and hole trap densities. Here, we consider the temperature range in which the
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minority carrier concentration n(T ) is much less than the majority carrier concentration p(T ).
When the value y is defined as

y ≡ 1
T 3/2

p(T )[p(T ) +Ncomp]
(NA − Ncomp)− p(T )

, (54)

the following relationship is obtained from equations (50) and (53):

y =
NV0k

3/2
B

4
exp

(
−∆EA

kBT

)
. (55)

We proceed to find the values of (NA − Ncomp) and Ncomp by making the ln y − 1/T curve
straight. Using equation (55), ∆EA is then determined from the slope of the straight ln y − 1/T
line. The software for this curve-fitting procedure is included in the Windows application software
for FCCS freely downloaded from our web site (http://www.osakac.ac.jp/labs/matsuura/).

3.2. Free-carrier concentration spectroscopy

Using experimental p(T ), the FCCS signal is defined as [22, 23]

H(T, Eref) ≡ p(T )2

(kBT )5/2 exp
(

Eref

kBT

)
. (56)

The FCCS signal has a peak at the temperature corresponding to each acceptor level or hole
trap level, where Eref is the parameter which can shift the peak temperature of H(T, Eref)
within the temperature range of the measurement. From each peak value and peak temperature,
therefore, the density and energy level of the corresponding acceptor or hole trap can be accurately
determined.

Although FCCS can be applied in any nondegenerate semiconductor including several
acceptor species, donor species and traps, we focus on a p-type semiconductor doped with one
sort of acceptor. Since p(T ) is given by

p(T ) = NAF (∆EA)− Ncomp (57)

in the temperature range in which n(T ) is much less than p(T ), substituting equation (50) for one
of the two p(T ) in equation (56) and substituting equation (57) for the other p(T ) in equation (56)
yield

H(T, Eref) =
NA

kBT
exp

(
−∆EA − Eref

kBT

)
I(∆EA)− NcompNV0

kBT
exp

(
Eref −∆EF

kBT

)
, (58)

where

I(∆EA) = NV0 exp
(
∆EA −∆EF

kBT

)
F (∆EA) (59)

and F (∆EA) represents fFD(∆EA) or fconv(∆EA) or f(∆EA).
The function

NA

kBT
exp

(
−∆EA − Eref

kBT

)
(60)

in equation (58) has a peak value of NA exp(−1)/kTpeak at the peak temperature

Tpeak =
∆EA − Eref

kB
. (61)
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As is clear from equation (61), Eref can shift the peak of H(T, Eref)within the temperature range
of the measurement. Although the peak temperature of H(T, Eref) is slightly different from the
peak temperature calculated by equation (61) due to the temperature dependence of I(∆EA),
we can easily determine the accurate values of NA and ∆EA from the peak of the experimental
H(T, Eref), using a personal computer. The Windows application software for FCCS can be
freely downloaded from our web site (http://www.osakac.ac.jp/labs/matsuura/).

When fFD(∆EA) is substituted for F (∆EA) in equation (59), the values of NA, ∆EA and
Ncomp determined from the peak value and peak temperature of H(T, Eref) coincides with those
determined by the conventional curve-fitting procedure. In the following sections, therefore,
FCCS is applied to determine NA, ∆EA and Ncomp for all the distribution functions.

4. Experimental

In order to form a p-type 4H–SiC layer, Al ions were implanted at room temperature to the
5 µm thick n-type 4H–SiC epilayer with N atoms of 2.5× 1015 cm−3 on n-type 4H–SiC {0001}
substrate with 8◦ off to 〈112̄0〉 direction. In order to obtain a box profile of the Al concentration,
seven-fold Al ion implantation was carried out with different energies onto the SiC epilayer
surface tilted to 7◦ to normal. Each dose of Al ions was 3.0× 1014 cm−2, and the implantation
energies were 1.0, 1.6, 2.4, 3.3, 4.4, 5.6 and 7.0 MeV. After the implantation, the sample was
annealed at 1575 ◦C for 1 h in an Ar atmosphere (post-annealing). The Rutherford backscattering
spectroscopy (RBS) spectrum of the post-annealed sample was close to the RBS spectrum of the
pre-implanted SiC epilayer, indicating that the damage due to the ion implantation was almost
annealed out. Figure 1 shows the profile of the Al concentration measured by SIMS. From
figure 1, the mean Al concentration in the box profile is approximately 5× 1018 cm−3.

The 1.3µm thick layer from the surface was removed by reactive ion etching using a mixture
of CF4 and O2, and then the sample was cut into a square 4×4mm2 in size. Ohmic metal (Al/Ti)
was deposited on four corners of the etched surface, and the sample was annealed. The hole
concentration p(T ) of the p-type layer formed by Al implantation was measured by the van der
Pauw method at temperatures between 100 and 420 K and in a magnetic field of 1.4 T. In order
to estimate p(T ) from the results of the Hall-effect measurements, the thickness of p-type layer
was assumed to be 2 µm.

5. Results and discussion

Figure 2 shows the temperature dependences of the hole concentration (open circles) and the
Fermi level (open triangles), where ∆EF is calculated using

∆EF = kBT ln
[
NV(T )
p(T )

]
(62)

and m∗ is assumed to be m0 in order to calculate NV(T ) using equation (51). The value of p(T )
at room temperature is 2.5 × 1017 cm−3, while it exceeds 1018 cm−3 above 390 K. Since the
series of the open circles in figure 2 seem straight, the thermal activation energy can be tentatively
obtained from the slope of the Arrhenius plot. The thermal activation energy is estimated to be
0.33 eV, which corresponds to∆EA only when one sort of acceptor exists and Ncomp = 0 cm−3.
In order to meet the p(T ) experimentally obtained, NA is suggested to be 3.6 × 1021 cm−3,
indicating that it is too high. Therefore, this estimation is not good.
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Figure 1. Depth profile of implanted Al concentration measured by SIMS. The
thickness of n-type epilayer is 5 µm. In order to form the sample for Hall-effect
measurements, the 1.3 µm thick layer from the surface is etched.
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Figure 2. Temperature dependences of hole concentration (open circles) and
Fermi level (open triangles).

Since∆EF is between 0.12 and 0.14 eV in figure 2, the Fermi level is closer to EV than the
Al acceptor level of ∼0.18 eV obtained from PL [6]. Therefore, it is impossible to ignore the
influence of the excited states of the Al acceptor on p(T ).

In the FCCS analyses, H(T, Eref) is calculated by interpolating p(T )with a cubic smoothing
natural spline function at intervals of 0.1K. The peak temperature and peak value of H(T, 0.219)
are 366.8 K and 3.62 × 1042 cm−6 eV−2.5, respectively. Since only one peak appears in the
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Figure 3. Experimental H(T, Eref) (open circles), and a set of three H(T, Eref)
simulated with the values determined by FCCS using fFD(∆EA) (broken curve),
fconv(∆EA) (dotted curve) and f(∆EA) (solid curve).

Table 1. Results determined by FCCS.

Distribution function type NA (cm−3) ∆EA (eV) Ncomp (cm−3)

FD distribution: fFD(∆EA) 3.51 × 1019 0.162 1.28 × 1018

Conventional distribution: fconv(∆EA) 6.03 × 1020 0.176 1.36 × 1019

Proposed distribution: f(∆EA) 5.46 × 1018 0.177 7.42 × 1016

experimental H(T, Eref) with Eref = 0.219 eV (open circles) in figure 3, it is considered that
only one acceptor level may be included in the semiconductor. Table 1 shows the values of
NA, ∆EA and Ncomp determined by FCCS using fFD(∆EA), fconv(∆EA) and f(∆EA) from
this peak. Here, the values determined by FCCS using fFD(∆EA) are in good agreement with
those determined by the conventional curve-fitting procedure. In the case of fconv(∆EA) or
f(∆EA), the highest excited state considered in the FCCS analysis is the sixth excited state.
When εs is 10, the ground-state level is calculated to be∆E1 = 136.0meV, and the excited state
levels are calculated to be ∆E2 = 34.0 meV, ∆E3 = 15.1 meV, ∆E4 = 8.5 meV, ∆E5 = 5.4
meV, ∆E6 = 3.8 meV and ∆E7 = 2.8 meV. Since the experimental excited state levels were
uncertain, these calculated excited state levels were used in the analyses. All the∆EA shown in
table 1 are close to ∆EA determined from PL.

Figure 3 also shows a set of three H(T, Eref) simulated using equation (58) with NA,∆EA

and Ncomp determined by FCCS for fFD(∆EA) (broken curve), fconv(∆EA) (dotted curve) and
f(∆EA) (solid curve). Although all the peaks of the three simulated FCCS signals coincide
with the peak of the experimental H(T, Eref), the FCCS signal (solid curve) simulated using
f(∆EA) is in better agreement with the experimental FCCS signal (open circles) than the other
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using fFD(∆EA) (broken curve), fconv(∆EA) (dotted curve) and f(∆EA) (solid
curve).

signals (dotted and broken curves) are. This indicates that NA, ∆EA and Ncomp determined
using f(∆EA) are more reliable than the others.

Figure 4 shows the experimental p(T ) (open circles) and a set of three p(T ) simulated by
equations (50) and (57) using NA,∆EA and Ncomp shown in table 1. The broken, dotted and solid
curves represent the p(T ) simulated using fFD(∆EA), fconv(∆EA) and f(∆EA), respectively.
All the simulated p(T ) are in good agreement with the experimental p(T ). This indicates that
it is difficult to investigate the influence of the excited states of the acceptor on p(T ) by the
curve-fitting procedure of p(T ).

As is clear from figure 1, NA should be lower than approximately 5 × 1018 cm−3. This
indicates that NA of 5.46×1018 cm−3 obtained using the proposed distribution function f(∆EA)
is more reliable than the others. Ncomp determined by FCCS is higher than the density of N
atoms with which the n-type epilayer was doped, because Ncomp determined by FCCS includes
the donor density owing to N atoms as well as deep hole traps created by ion implantation.

Since the excited states are considered to behave like hole traps according to the conventional
distribution function model, p(T ) simulated using fconv(∆EA) becomes lower than p(T )
simulated using fFD(∆EA) in the case of the same NA. This indicates that NA required to
meet the experimental p(T ) in the case of fconv(∆EA) becomes higher than NA in the case of
fFD(∆EA). Since NA obtained using fFD(∆EA) is already higher than the Al concentration
determined by SIMS, it is necessary to introduce Eex when the influence of the excited states of
the acceptor is considered.

In figure 5, the solid, dotted and chain curves represent exp(−Eex/kBT ), ∆EA and ∆EF,
respectively, which are simulated using NA, ∆EA and Ncomp determined using f(∆EA). ∆EA

decreases with T , and then ∆EA above 356 K becomes lower than ∆EF, indicating that the
ionization efficiency of the Al acceptor increases rapidly with T . Since exp(−Eex/kBT )
decreases rapidly with T , the holes bound to acceptors are expected to decrease rapidly with T .
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(dotted curve) and ∆EF (chain curve), which are simulated with NA, ∆EA and
Ncomp determined using f(∆EA).

Therefore, NA required to meet the experimental p(T ) becomes appropriate. In other words, the
acceptor behaves as a shallow acceptor at the operative temperatures of SiC devices, although it
acts as a deep acceptor at room temperature.

When the simulated H(T, Eref) can be fitted to the experimental H(T, Eref), the simulated
p(T ) is always fitted to the experimental p(T ). However, the opposite is not always true. This
indicates that the conventional curve-fitting procedure of p(T ) is not suitable for investigating
the influence of the excited states on the majority-carrier concentration. Moreover, it is found
that the influence of the excited states as well as the ensemble average of the ground and excited
state levels of the acceptor should be considered in the analysis of p(T ).

6. Conclusion

The distribution function considering the influence of the excited states of a substitutional
dopant on the majority-carrier concentration was theoretically discussed. In the discussion,
an ensemble average of the ground and excited state levels of the dopant was introduced. Using
the experimental p(T ) in Al-doped p-type 4H–SiC, the influence of the excited states of the
Al acceptor on p(T ) was investigated. It was found that FCCS, which we have proposed, was
suitable for investigating this influence more than the curve-fitting procedure of p(T )was. In the
FCCS analysis, the values of NA, ∆EA and Ncomp determined using the proposed distribution
function were considered to be reliable. It was demonstrated that in the analysis of p(T ) the
influence of the excited states of the acceptor as well as the ensemble average of the excited state
levels should be considered.
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