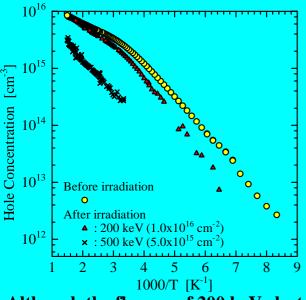
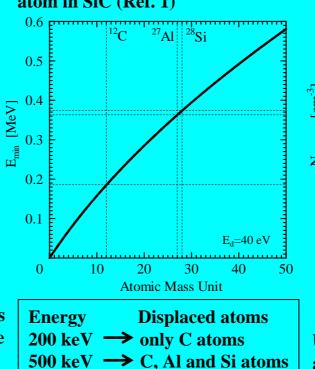
Decrease in Hole Concentration in Al-doped 4H-SiC by Irradiation of 200 keV Electrons

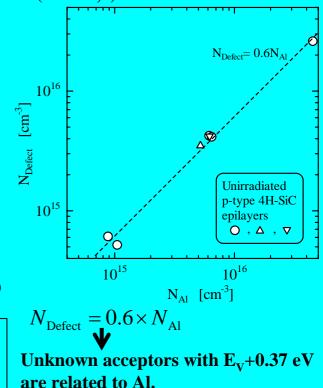

H. Matsuura, N. Minohara, M. Takahashi, T. Ohshima¹), and H. Itoh¹)

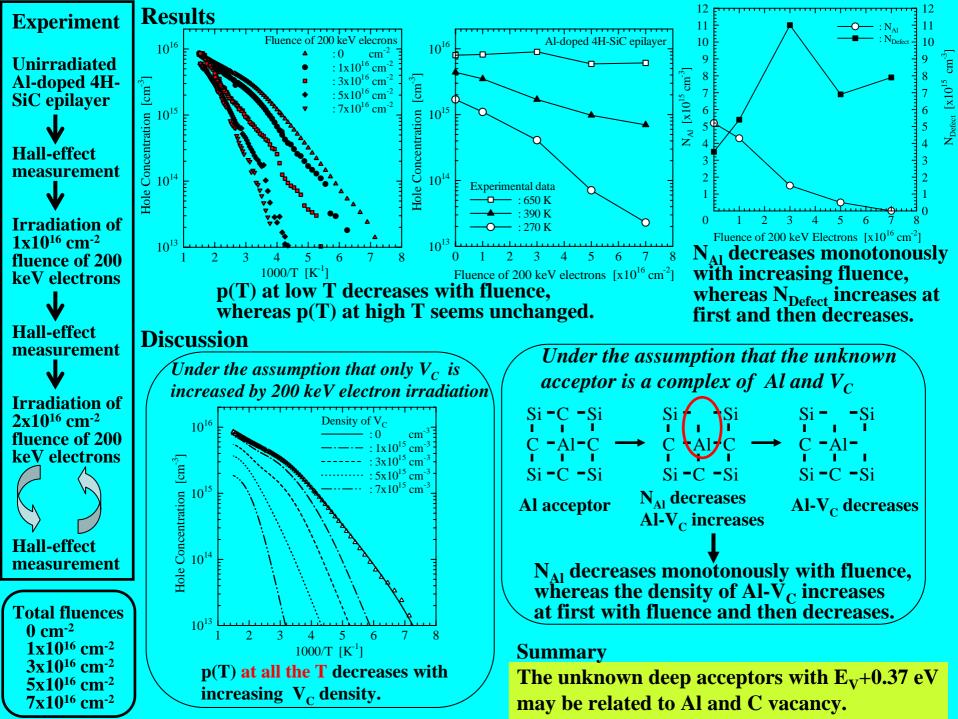
Osaka Electro-Communication University, ¹⁾Japan Atomic Energy Agency

Abstract. From the temperature dependence of the hole concentration p(T) in lightly Al-doped 4H-SiC epilayer irradiated with several fluences of 200 keV electrons, the density (N_{Al}) of Al acceptors with E_V +0.2 eV decreases significantly with increasing fluence, whereas the density (N_{Defect}) of unknown acceptors (or defects) with E_V +0.37 eV increases with fluence at first and then decreases slightly. Although only C vacancies increases with fluence because 200 keV electrons can displace only C atoms, only the increase in the density of C monovacancies (V_C) located at midgap cannot explain the changes of p(T) by 200 keV electron irradiation. In order to explain the fluence dependences of N_{Al} and N_{Defect} , it may be necessary to consider the relationship between C vacancies and Al acceptors.


Introduction

Irradiation-energy dependence of p(**T**) (**Refs. 1,2**)




Although the fluence of 200 keV electrons is higher, the p(T) decreases less than due to 500 keV electron irradiation.

Atomic-mass-unit dependence of minimum electron energy required for displacement of substitutional atom in SiC (Ref. 1)

Relationship between N_{Al} and N_{Defect} (Refs. 1,3)

References

- Hideharu Matsuura, et al.: "Relationship between defects induced by irradiation and reduction of hole concentration in Al-doped 4H-SiC", Physica B 376-377 (2006) 342-345.
- 2) Hideharu Matsuura, et al.: "Decrease in Al acceptor density in Al-doped 4H-SiC by irradiation with 4.6 electrons", Appl. Phys. Lett. 83 (2003) 4981-4983.
- 3) Hideharu Matsuura, et al.: "Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H-SiC epilayers", J. Appl. Phys. 96 (2004) 2708-2715.