Hall 測定によるワイドギャップ半導体中の不純物の評価

松浦 秀治

大阪電気通信大学 工学部電子工学科 〒572-8530 寝屋川市初町 18-8、 matsuura@isc.osakac.ac.jp

Hall 測定から得られる多数キャリア密度の温度依存性には、不純物及び欠陥の密度とエネルギ 一準位の情報が含まれている。しかし、これまでの解析方法では得られた不純物(または欠陥) に関する結果には曖昧さが残り、問題であった。そこで、温度依存性のデータから、不純物(また は欠陥)のエネルギー準位に対応する温度でピークになる評価関数を用いた解析方法(FCCS: Free Carrier Concentration Spectroscopy)を開発した。つまり、ピークの数から不純物及び欠 陥の種類、ピーク温度からエネルギー準位、ピーク値から密度を評価できる。したがって、これ までの解析方法とは異なり、より正確な密度とエネルギー準位を得ることができる。FCCS 法で は、多数キャリア密度に影響を与えるほど高い密度の不純物(または欠陥)を評価できる。一方、 DLTS(Deep Level Transient Spectroscopy)は、多数キャリア密度に影響を与えないほど微量 な密度の欠陥を評価できるので、FCCS 法は DLTS 法と補完する関係である。

ここでは、FCCS 法をワイドギャップ半導体である SiC (無添加、N 添加、Al 添加)、Mg-doped GaN、B-doped diamond に適用した例を述べる。さらに、p 型ワイドギャップ半導体特有の深い アクセプタの評価についても検討する。

KEYWORDS: density and energy level of impurity, dopant, Hall-effect measurement, temperature dependence of majority-carrier concentration, distribution function of acceptors, deep acceptor

1. はじめに

CPU (Central Processing Unit) やメモリの主要構成要素である LSI (Large Scale Integrated Circuit) で用いられているシリコン (Si) 中に含まれる不純物(ドーパント)は ppm オーダーで精度良く制御され、さらに Si 中の欠陥もかなり低減されている。一方、Si (間接遷移型、バンドギャップ 1.1 eV) にはない物性を生かした半導体デバイスの開発が行われている。例えば、直接遷移型を生かしたデバイス (GaAs 系赤色レーザダイオード、GaN 系青色レーザダイオード、GaSb 系近・中赤外レーザダイオード)、ワイドギャップを生かした電子デバイス (超低損失電力用 SiC パワーデバイス、GaN 超高周波デバイス)、バンドギャップを自由に設計できることを生かした 化合物半導体タンデム型太陽電池がある。しかし、半導体の結晶成長を行った場合、意図しない 不純物の混入及び欠陥の形成のため、良好な電気特性が得られないことがある。

半導体デバイスを製作するためには、精度良く pn 制御する必要がある。電気的に良好な n 型 半導体及び p 型半導体の結晶成長条件を見つけ出すためには、

A. undoped の結晶中に含まれる、電気的に活性な残留不純物及び真性欠陥を低減できる成長 条件を調べ、 B. イオン化エネルギーの低いドーパント(ドナーまたはアクセプタ)を探すこと が必要である。また、インプランテーションによりドーパントを注入する場合や宇宙空間等で放 射線が照射された場合に形成される欠陥はデバイスの電気特性に大きく影響を与える。そのため、 結晶に含まれる不純物及び欠陥を光学的または電気的に評価する必要がある。ここでは、電気的 評価法であるホール効果測定に注目し、ホール効果測定から得られる多数キャリア密度の温度依 存性から不純物及び欠陥の密度とエネルギー準位を評価する方法の有効性を検討する。

ホール効果測定から得られる多数キャリア密度の温度依存性には不純物及び欠陥の密度とエネ ルギー準位の情報が含まれている。しかし、通常は室温(または液体窒素温度)以外ではホール 効果測定が行われていない。多数キャリア密度の温度依存性を測定した場合でも、あまり解析は 行われていない。ここでは、これまでの評価方法と問題点について述べた後、当研究室で開発を 行っている評価方法(Free Carrier Concentration Spectroscopy; FCCS 法)[1-26]について述べ る。その後、ワイドギャップ半導体に適用し、FCCS 法の有用性を実証する。

2. 評価方法の現状

以下では議論を簡単にするため、n型半導体について考える。

2.1. ドナーが1種類の場合

ドナー密度を $N_{\rm D}$ 、ドナー準位を $\Delta E_{\rm D}$ とすると、多数キャリア(電子)密度の温度依存性n(T)は、 電荷中性条件から、少数キャリア(正孔)密度が影響を及ぼさない温度範囲では

$$n(T) = N_{\rm D} [1 - f_{\rm FD} (\Delta E_{\rm D})]$$
(1)
と表せる。ここで、 $f_{\rm FD} (\Delta E_{\rm D})$ はドナーに対する Fermi-Dirac 分布関数であり、

$$f_{\rm FD}(\Delta E_{\rm D}) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{\Delta E_{\rm F} - \Delta E_{\rm D}}{kT}\right)}$$
(2)

と表せ、 $\Delta E_{\rm F}$ はフェルミ準位であり、 $\Delta E_{\rm D}$ と $\Delta E_{\rm F}$ は伝導帯からのエネルギーである。一方、有効 状態密度 $N_{\rm C}(T)$ を用いて、n(T)を表すと

$$n(T) = N_{\rm C}(T) \exp\left(-\frac{\Delta E_{\rm F}}{kT}\right)$$
(3)

となる。ここで、

$$N_{\rm C}(T) = 2 \left(\frac{2\pi m^* kT}{h^2}\right)^{3/2} M_{\rm C} \,, \tag{4}$$

 m^* は電子の有効質量、kは Boltzmann 定数、hは Planck 定数、 M_c は伝導帯の等価な谷の数、Tは絶対温度である。

(1)式と(3)式を用いて、
$$n(T)$$
を消去し、
 $N_{\rm D} >> \frac{N_{\rm C}(T)}{8} \exp\left(-\frac{\Delta E_{\rm D}}{kT}\right)$
(5)

が成り立つ低温領域を考えると、

$$n(T) \cong \sqrt{\frac{N_{\rm C}(T)N_{\rm D}}{2}} \exp\left(-\frac{\Delta E_{\rm D}}{2kT}\right) = T^{3/4} \left(\frac{2\pi m^* k}{h^2}\right)^{3/4} \sqrt{M_{\rm C}} \sqrt{N_{\rm D}} \exp\left(-\frac{\Delta E_{\rm D}}{2kT}\right)$$
(6)

となる。したがって、縦軸を $n(T)/T^{3/4}$ 、横軸を1/Tとして方対数のグラフを描くことにより、 傾きから $\Delta E_{\rm D}$ 、切片から $N_{\rm D}$ を求めることができる。

通常は、簡易的に $\ln n(T) - 1/T$ のグラフの傾きから $\Delta E_{\rm D}$ を求め、飽和値(一定になる値)が $N_{\rm D}$ となる。

2.2. ドナーとアクセプタが各々1種類存在する場合

ドナー密度を $N_{\rm D}$ 、ドナー準位を $\Delta E_{\rm D}$ 、アクセプタ密度を $N_{\rm A}$ とすると、電子密度の温度依存 性n(T)は、電荷中性条件から

$$n(T) = N_{\rm D} \left[1 - f_{\rm FD} \left(\Delta E_{\rm D} \right) \right] - N_{\rm A} \tag{7}$$

と表せる。(7)式に(2)式を代入すると、

$$\frac{n(T) + N_{\rm A}}{N_{\rm D} - [n(T) + N_{\rm A}]} = \frac{1}{2} \exp\left(-\frac{\Delta E_{\rm D}}{kT}\right) \exp\left(\frac{\Delta E_{\rm F}}{kT}\right)$$
(8)

が得られる。さらに(3)式を用いて、(8)式の $\exp(\Delta E_{_{\rm F}}/kT)$ を消去すると、

$$\frac{n(T)[n(T) + N_{\rm A}]}{N_{\rm D} - [n(T) + N_{\rm A}]} = \frac{N_{\rm C}(T)}{2} \exp\left(-\frac{\Delta E_{\rm D}}{kT}\right)$$
(9)

となる。(9)式に(4)式を代入すると、

$$\frac{1}{T^{3/2}} \cdot \frac{n(T)[n(T) + N_{\rm A}]}{(N_{\rm D} - N_{\rm A}) - n(T)} = \left(\frac{2\pi m^* k}{h^2}\right)^{3/2} M_{\rm C} \exp\left(-\frac{\Delta E_{\rm D}}{kT}\right)$$
(10)

となる。 $N_{\rm A}$ と $(N_{\rm D} - N_{\rm A})$ をパラメータとして、縦軸を(10)式の左辺、横軸を1/T として片対数 のグラフを描く。2 種類のパラメータを変化させ、直線に近いグラフを得る。このときのパラメ ータの値から $N_{\rm D}$ と $N_{\rm A}$ がわかり、グラフの傾きから $\Delta E_{\rm D}$ が求められる。

2.3. カーブフィティング法(2種類以上のドナーが存在する場合)

n種類のドナー(密度 N_{Di} 、エネルギー準位 ΔE_{Di})及び N_{A} を考える。この場合、電荷中性条件から、

$$n(T) = \sum_{i=1}^{n} N_{\text{D}i} \left[1 - f_{\text{FD}} \left(\Delta E_{\text{D}i} \right) \right] - N_{\text{A}}$$
(11)

となる。カーブフィッティング法では、次の手順にしたがって、各々のドナーを評価する。

- A. 半導体中に含まれるドナーの種類を仮定する。
- B. (2n+1)種類のパラメータ $(N_A$ と各々のドナーの N_{Di} と ΔE_{Di})の初期値を設定する。
- C. (3)式と(11)式を用いて、n(T)をシミュレーションする。
- D. (2n+1) 種類のパラメータを変化させ、実験結果に近いシミュレーション結果を得る。

2.4. Differential Hall-Effect Spectroscopy (DHES)

Hoffmann は、縦軸を $(-kT)dn(T)/d\Delta E_F$ 、横軸を ΔE_F としてグラフを描くと、各々のドナー 準位に対応する ΔE_F でピークになることを見つけ出し、各々のピークからドナー密度とドナー準 位を評価する方法を提案した[27]。

(11)式を用いて、 $(-kT)dn(T)/d\Delta E_{\rm F}$ を計算すると、

$$-kT\frac{\mathrm{d}n(T)}{\mathrm{d}\Delta E_{\mathrm{F}}} = \sum_{i=1}^{n} N_{\mathrm{D}i} \frac{2\exp\left(\frac{\Delta E_{\mathrm{D}i} - \Delta E_{\mathrm{F}}}{kT}\right)}{\left[1 + 2\exp\left(\frac{\Delta E_{\mathrm{D}i} - \Delta E_{\mathrm{F}}}{kT}\right)\right]^{2}} \cdot \left[1 + \frac{\Delta E_{\mathrm{D}i} - \Delta E_{\mathrm{F}}}{kT} \cdot \frac{\partial(kT)}{\partial\Delta E_{\mathrm{F}}}\right]$$
(12)

となる。そこで、Hoffmann は

$$\frac{\Delta E_{\rm Di} - \Delta E_{\rm F}}{kT} \cdot \frac{\partial(kT)}{\partial \Delta E_{\rm F}} <<1$$
(13)

が成り立つと仮定し、

$$-kT\frac{\mathrm{d}n(T)}{\mathrm{d}\Delta E_{\mathrm{F}}} \cong \sum_{i=1}^{n} N_{\mathrm{D}i} \frac{2\exp\left(\frac{\Delta E_{\mathrm{D}i} - \Delta E_{\mathrm{F}}}{kT}\right)}{\left[1 + 2\exp\left(\frac{\Delta E_{\mathrm{D}i} - \Delta E_{\mathrm{F}}}{kT}\right)\right]^{2}}$$
(14)

を導いた。この場合、(14)式の右辺の各項は

$$\Delta E_{\rm F} = \Delta E_{\rm Di} + kT_{\rm peaki} \ln 2$$

のときに最大値 $N_{\text{D}i}$ /4となる。したがって、ピーク値と ΔE_{F} 及びそのフェルミ準位になる温度 (T_{neaki})を知ることにより、 $N_{\text{D}i}$ と $\Delta E_{\text{D}i}$ を見積もることが出来る。

(15)

2.5. 問題点

最初に、簡易的に行われている $\ln n(T) - 1/T$ による解析の問題点について述べる。図 1 の〇印 はドナー密度が $N_{\text{D1}} = 1 \times 10^{16} \text{ cm}^{-3}$ 、ドナー準位が $\Delta E_{\text{D1}} = 124 \text{ meV}$ の 1 種類のドナー (Donor1) による n(T) のシミュレーション結果である。実線の傾きからドナー準位は約120 meV、飽和値 からドナー密度は約1×10¹⁶ cm⁻³ と求められる。

次に Donor1 の他に、もう 1 種類のドナー(Donor2: $N_{D2} = 5 \times 10^{15} \text{ cm}^{-3}$ 、 $\Delta E_{D2} = 64 \text{ meV}$) が存在する場合のシミュレーション結果を□印で示す。仮に破線のような直線を引いた場合、傾 きからドナー準位は約55 meV、飽和値からドナー密度は約1.5×10¹⁶ cm⁻³ と求められる。したが って、浅いドナーが 1 種類しか含まれていないと評価してしまう。

一方 Donor1 の他に、アクセプタ $(N_A = 1 \times 10^{15} \text{ cm}^{-3})$ が存在するときのシミュレーション結果を \triangle 印で示す。図中のような1点鎖線で直線を引いた場合、傾きからドナー準位は約250 meV、飽和値からドナー密度は約9×10¹⁵ cm⁻³と求められる。したがって、非常に深いドナーが1 種類しか含まれていないと評価してしまう。

次に、カーブフィッティング法では成長させた結晶中に含まれるドナーの種類を最初に仮定しなければならない。ところが、多種類の残留不純物や欠陥が含まれることが考えられるため、ドナーの種類を仮定することは困難である。さらに、ドーパントが無添加のときに良質な結晶成長の条件を見つけた後、1種類のドナーを添加した結晶を成長させても、2種類以上のドナー準位が形成されることもあるので、ドナーの種類を仮定することは容易ではない。また、例えば2種類のドナーを仮定した場合でさえ、5種類のパラメータ(N_{Dl} 、 ΔE_{Dl} 、 N_{D2} 、 ΔE_{D2} 、 N_{A})を同時に変化させながらカーブフィッティングさせるため、一意的にすべてのパラメータを決めることが困難である。

DHES 法では、実験で得たn(T)を微分するため、測定誤差を増幅させ、真のピークを見つけ出

すことが困難になる。さらに、(13)式の仮定は成り立たない場合があることがわかった。また、 この方法では n型半導体中のアクセプタ密度を評価することはできない。

以上のことより、多数キャリア密度の温度依存性を用いて、微分を行わずに、各々の不純物(または欠陥)のエネルギー準位に対応する温度でピークになる評価関数を見つけ出すことができれば、ピークの数から不純物及び欠陥の種類、ピーク温度からエネルギー準位、ピーク値から密度 を評価することが可能になる。

3. Free Carrier Concentration Spectroscopy (FCCS)

FCCS 法では評価関数を

$$H(T, E_{\rm ref}) \equiv \frac{n(T)^2}{(kT)^{5/2}} \exp\left(\frac{E_{\rm ref}}{kT}\right)$$
(16)

と定義する[8-26]。ここで、 E_{ref} は $H(T, E_{ref})$ がピークになる温度を変えるパラメータである。

次に、この評価関数が各々のドナー準位に対応する温度でピークになることを示す。n種類のドナー(密度 N_{Di} 、エネルギー準位 ΔE_{Di})、測定温度範囲では完全にイオン化しているドナー密度(N_{DI})及びアクセプタ密度(N_{A})を考える。この場合、電荷中性条件から、

$$n(T) = \sum_{i=1}^{n} N_{\text{D}i} \Big[1 - f_{\text{FD}} \big(\Delta E_{\text{D}i} \big) \Big] - \big(N_{\text{A}} - N_{\text{D}I} \big)$$
(17)

となる。

定義式である(16)式の一方のn(T)に(3)式を代入し、他方のn(T)に(17)式を代入すると、

$$H(T, E_{\rm ref}) = \sum_{i=1}^{n} \frac{N_{\rm Di}}{kT} \exp\left(-\frac{\Delta E_{\rm Di} - E_{\rm ref}}{kT}\right) I(\Delta E_{\rm Di}) - \frac{N_{\rm comp}N_{\rm C0}}{kT} \exp\left(\frac{E_{\rm ref} - \Delta E_{\rm F}}{kT}\right)$$
(18)
$$\geq \hbar S_{\odot} \quad z = \Im_{\odot}$$

$$I(\Delta E_i) = \frac{N_{\rm C0}}{2 + \exp\left(\frac{\Delta E_F - \Delta E_i}{kT}\right)},\tag{19}$$

$$N_{\rm C0} = 2 \left(\frac{2\pi m^*}{h^2}\right)^{3/2} M_{\rm C} \,, \tag{20}$$

$$N_{\rm comp} = N_{\rm A} - N_{\rm DI} \tag{21}$$

である。(18)式から明らかのように、 $H(T, E_{ref})$ の第一項目には

$$\frac{N_{\rm Di}}{kT} \exp\left(-\frac{\Delta E_{\rm Di} - E_{\rm ref}}{kT}\right)$$
(22)

が含まれている。この関数は、温度

$$T_{\text{peak}i} = \frac{\Delta E_{\text{D}i} - E_{\text{ref}}}{k}$$
(23)

のときにピークとなり、ピーク値は $N_{\text{Di}} \exp(-1)$ である。さらに、(19)式の温度依存性が弱いことがわかっているので[8]、 $H(T, E_{\text{ref}})$ には各々のドナー準位に対応した温度でピークが現れ、各々のピークから密度とエネルギー準位を容易に見積もることができる。また、(23)式から明らかな

ように、パラメータ E_{ref} によりピーク温度を変化させることができる。そのため、 $E_{ref} = 0 \text{ eV}$ の時にピーク温度が測定温度範囲外の場合でも、 E_{ref} を変えることにより測定温度内にピークを移動でき、そのピークに対応するドナーの密度とエネルギー準位を評価できる。

4. 実験結果・考察

現在、FCCS 法を利用するための Windows 用アプリケーションをウェブサイト (http://www.osakac.ac.jp/labs/matsuura/)から無料でダウンロードできる。さらに、このアプ リケーションは従来の評価方法による解析も可能である。

今回は、このアプリケーションを用いながら実験結果を解析する。

4.1. Undoped 3C-SiC

(100) n型Si基板上に、炭化バッファ層を介し、Si₂(CH₃)₆ガスを用いて 1350℃で 32 µ mの undoped 3C-SiC薄膜をヘテロエピタキシャル成長させた。次に、Si基板を化学エッチングして除 去した後、5×5 mm²にカットした 3C-SiC表面の四隅にAl電極を蒸着した。磁場 5 kG、電流 1 mA、約 85 Kから約 500 Kの温度範囲でホール効果測定を行った[9]。

最初に、得られた電子密度の温度依存性を図2のように入力する。次に、FCCS法で解析するために、スプライン関数を用いて補間する(図3)。図3の○印が実験結果であり、実線が補間したデータである。この補間したデータを用いて、(3)式からフェルミ準位の温度依存性を計算する。

(16)式の定義式を用いて、評価関数 $H(T, E_{ref})$ を計算した結果を図 4 の濃い実線で示す。ここでは、ピークを測定温度範囲内にするため、 $E_{ref} = -0.000254$ eVを用いた。一つのピークと一つのショルダー、さらに $H(T, E_{ref})$ が 100 K以下で増加していることより、少なくとも 3 種類のドナーが存在することがわかる。まず、ピーク温度 137.3 K及びピーク値 2.29×10³⁸ cm⁻⁶ eV^{-2.5}から、ドナー密度 (N_{Dl})を 7.10×10¹⁶ cm⁻³及びドナー準位 (ΔE_{Dl})を 51 meV と評価できた。図 4 の淡い実線は

$$\frac{N_{\rm D1}}{kT}\exp\left(-\frac{\Delta E_{\rm D1} - E_{\rm ref}}{kT}\right)I(\Delta E_{\rm D1}) - \frac{N_{\rm comp}N_{\rm C0}}{kT}\exp\left(\frac{E_{\rm ref} - \Delta E_{\rm F}}{kT}\right)$$
(24)

を用いて計算した結果である。ここでは、図中に示されている $N_{\rm comp} = -3.48 \times 10^{16} {
m cm}^{-3}$ を用いている。

次に(18)式を用いて、今回評価したドナー(N_{Dl} 、 ΔE_{Dl})の影響を除いた評価関数 $H2(T, E_{\text{ref}})$ を

$$H2(T, E_{\rm ref}) = H(T, E_{\rm ref}) - \frac{N_{\rm D1}}{kT} \exp\left(-\frac{\Delta E_{\rm D1} - E_{\rm ref}}{kT}\right) I(\Delta E_{\rm D1})$$
(25)

と定義する。 $H2(T, E_{ref})$ を図 5 の濃い実線で示す。ここでは、 $E_{ref} = -0.007023$ eV を用いた。 ピーク温度 98.4 K とピーク値 8.54×10³⁷ cm⁻⁶ eV^{-2.5} から、 $N_{D2} = 3.83 \times 10^{16}$ cm⁻³及び $\Delta E_{D2} = 18.4$ meV と評価できた。図 5 の淡い実線は

$$\frac{N_{\rm D2}}{kT}\exp\left(-\frac{\Delta E_{\rm D2} - E_{\rm ref}}{kT}\right)I(\Delta E_{\rm D2}) - \frac{N_{\rm comp}N_{\rm C0}}{kT}\exp\left(\frac{E_{\rm ref} - \Delta E_{\rm F}}{kT}\right)$$
(26)

を用いて計算した結果である。ここでは、図中に示されている $N_{\rm comp} = -2.08 \times 10^{15} \, {\rm cm}^{-3}$ を用いている。

次に、これ以上浅いドナーの評価は困難なため、今回評価したドナー(N_{D1} 、 ΔE_{D1} 、 N_{D2} 、 ΔE_{D2}) と N_{comp} の影響を除いた評価関数 $H3(T, E_{ref})$ を

$$H3(T, E_{\rm ref}) = H2(T, E_{\rm ref}) - \frac{N_{\rm D2}}{kT} \exp\left(-\frac{\Delta E_{\rm D2} - E_{\rm ref}}{kT}\right) I(\Delta E_{\rm D2}) - \frac{N_{\rm comp}N_{\rm C0}}{kT} \exp\left(\frac{E_{\rm ref} - \Delta E_{\rm F}}{kT}\right)$$
(27)

と定義する。 $H3(T, E_{ref})$ を図 6 の濃い実線で示す。ここでは、 $E_{ref} = 0$ eV を用いた。ピーク温度 359.3 K と ピ ー ク 値 6.48×10³⁷ cm⁻⁶ eV^{-2.5} か ら 、 $N_{D3} = 1.07 \times 10^{17}$ cm⁻³及 び $\Delta E_{D2} = 113.9$ meV と評価できた。図 6 の淡い実線は

$$\frac{N_{\rm D3}}{kT} \exp\left(-\frac{\Delta E_{\rm D3} - E_{\rm ref}}{kT}\right) I(\Delta E_{\rm D3})$$
(28)

を用いて計算した結果である。

以上のように、3 種類のドナーと N_{comp} を評価することができた。これらの値の妥当性を調べるために、得られた値(N_{D1} 、 ΔE_{D1} 、 N_{D2} 、 ΔE_{D2} 、 N_{D3} 、 ΔE_{D3} 、 N_{comp})を用いて、(3)式と(17)式からn(T)をシミュレーションし、実験結果とを比較した(図7)。図中の〇印が実験結果であり、実線がシミュレーションしたn(T)である。非常によい一致をしていることから、FCCS法で得られた評価結果は妥当であると考えられる。

51 meV の準位は 3C-SiH の substitutional サイトに入った窒素によるドナーであると考えられ、18.4 meV の準位は窒素と欠陥による複合体によるドナーと考えられる。しかし、113.9 meV の準位については検討中である。このように、ドーパントが無添加の結晶中にも数種類のドナーが含まれていることがわかる。図8には、各ドナー準位の全ドナー密度依存性(N_D)を示す[17]。

4.2. N-doped 4H-SiC

無添加の場合に 4H-SiC 中のドナー密度を10¹⁵ cm⁻³以下にできる成長条件で、ドナーとして窒素を添加した試料を作製し、ホール効果測定を行った[7]。FCCS 法を用いて解析すると、2 種類のドナーが見つかった。浅いドナーの密度とエネルギー準位は 6.45×10^{15} cm⁻³ と 65.3 meV であり、深いドナーの密度とエネルギー準位は 3.04×10^{16} cm⁻³ と 124 meV であった。また、アクセプタ密度は 6.14×10^{13} cm⁻³ であった。浅いドナーは 4H-SiC の hexagonal サイトに入った窒素ドナーであり、深いドナーは cubic サイトに入った窒素ドナーであると考えられる。4H-SiC 中には両サイトが同量あるため、2 種類のドナー密度は同じであると考えられ、2 種類のドナー密度が等しい場合もある[16]。しかし、今回のように成長条件によっては窒素が cubic サイトの方に入りやすい場合もあると考えられる。図 9 には、各ドナー準位の全ドナー密度依存性($N_{\rm p}$)を示す[16]。

カーブフィッティング法を用いた解析では同密度の2種類のドナーを仮定するが、FCCS法では この仮定が不必要である。この点では、FCCS法はこれまでの方法より優れているといえる。

4.3 p型 SiC 中のアクセプタ評価

Al を低濃度添加した 4H・SiC エピ膜中のアクセプタを FCCS 法で評価した結果、200 meV 付 近に Al によるアクセプタと 350 meV 付近にもう 1 つのアクセプタが検出できた(図 10)[15]。さ らに、350 meV 付近のアクセプタ密度は、Al アクセプタ密度の 0.6 倍である[15,23]。Al を添加 することで、これまでは 1 種類のアクセプタ準位が形成されると考えていたが、今回の解析から 2 種類のアクセプタが形成されていることがわかった。

高濃度の Al をイオン注入した p 型 4H-SiC の p(T)を用いて、(16)式から求めた FCCS 信号を 図 11(a)の丸印で示す。高濃度の Al を添加またはイオン注入した p 型 SiC の $\Delta E_{\rm F}$ は価電子帯上端 ($E_{\rm V}$) とアクセプタの基底準位 ($\Delta E_{\rm I} = \Delta E_{\rm A}$)の間にあるため、アクセプタの励起準位 (ΔE_{r} ; $r \geq 2$)を考慮しなければならない。報告されている励起状態を考慮した分布関数は

$$f_{\rm conv}(\Delta E_{\rm A}) = \frac{1}{1 + g_{\rm A,conv}(T) \exp\left(\frac{\Delta E_{\rm A} - \Delta E_{\rm F}}{kT}\right)},$$

$$g_{\rm A,conv}(T) = g_{\rm A}\left[1 + \sum_{r=2} g_r \exp\left(\frac{\Delta E_r - \Delta E_{\rm F}}{kT}\right)\right]$$
(30)

である[28,29]。(29)式と(30)式から、励起状態は正孔トラップ的な働きをすることがわかる。 一方、励起状態が正孔トラップ的かつ浅いアクセプタ的に働くと考えた分布関数として、

$$f(\Delta E_{\rm A}) = \frac{1}{1 + g_{\rm A}(T) \exp\left(\frac{\Delta E_{\rm A} - \Delta E_{\rm F}}{kT}\right)} , \qquad (31)$$

$$g_{\rm A}(T) = g_{\rm A} \exp\left(-\frac{\overline{E_{\rm ex}}}{kT}\right) \left[1 + \sum_{r=2}^{\infty} g_r \exp\left(\frac{\Delta E_r - \Delta E_{\rm F}}{kT}\right)\right]$$
(32)

を提案した[12-15,20,21,25]。ここで $\overline{E_{ex}}$ は、アクセプタの基底準位から見た、アクセプタの基底 状態と励起状態に存在する正孔の平均エネルギーであり、

$$\overline{E_{\text{ex}}} = \frac{\sum_{r=2} \left(\Delta E_{\text{A}} - \Delta E_{r}\right) g_{r} \exp\left(-\frac{\Delta E_{\text{A}} - \Delta E_{r}}{kT}\right)}{1 + \sum_{r=2} g_{r} \exp\left(-\frac{\Delta E_{\text{A}} - \Delta E_{r}}{kT}\right)}$$
(33)

で表される[12-15,20,21,25]。

1種類のアクセプタの場合、理論から導かれる FCCS 信号は

$$H(T, E_{\rm ref}) = \frac{N_{\rm A}}{kT} \exp\left(-\frac{\Delta E_{\rm A} - E_{\rm ref}}{kT}\right) I(\Delta E_{\rm A}) - \frac{N_{\rm comp}N_{\rm V0}}{kT} \exp\left(\frac{E_{\rm ref} - \Delta E_{\rm F}}{kT}\right)$$
(34)

であり[12-15,20,21,25]、式中の関数 $I(\Delta E_{A})$ は

$$I(\Delta E_{\rm A}) = N_{\rm V0} \exp\left(\frac{\Delta E_{\rm A} - \Delta E_{\rm F}}{kT}\right) F(\Delta E_{\rm A})$$
(35)

である。ここで $F(\Delta E_A)$ は分布関数であり、 $f_{FD}(\Delta E_A)$ または $f_{conv}(\Delta E_A)$ または $f(\Delta E_A)$ である。

図 11(a)のFCCS信号(〇印)のピークから、3 種類の分布関数を用いて見積もったp型 4H-SiC 中のアクセプタの密度とエネルギー準位を表 1 に示す。SIMS (Secondary Ion Mass Spectroscopy)から評価した膜中のAl濃度は約 5×10^{18} cm⁻³である。このうち、4 配位に入ったAl だけがアクセプタとして働くため、アクセプタ密度はAl濃度より低いか近いはずである。したがって、最適なアクセプタ密度が得られた分布関数は、提案している $f(\Delta E_A)$ だけである。

実験値 p(T) から求めた $\Delta E_{\rm F}$ と、 $F(\Delta E_{\rm A})$ として各々の分布関数および表 1 の値を用いてシミ ユレーションした FCCS 関数を図 11(a)の 1 点鎖線 ($f_{\rm FD}(\Delta E_{\rm A})$)、破線 ($f_{\rm conv}(\Delta E_{\rm A})$) と実線 ($f(\Delta E_{\rm A})$) で示す。〇印で示す実験結果とよく一致するのは、提案している $f(\Delta E_{\rm A})$ だけであ る。他方、各々の分布関数と表 1 の値を用いてシミュレーションした p(T) を図 11(b)の 1 点鎖線 ($f_{\rm FD}(\Delta E_{\rm A})$)、破線 ($f_{\rm conv}(\Delta E_{\rm A})$) と実線 ($f(\Delta E_{\rm A})$) で示す。この場合、全ての分布関数によ る p(T) が実験結果とよく一致しているため、p(T)を用いたカーブフィッティング法からは分布 関数の評価ができないことが明らかになった。

図 10 に p 型 4H-SiC エピ膜中のアクセプタ準位の全アクセプタ密度依存性(N_A)を示す[15]。 低濃度では 2 種類のアクセプタが存在する。一方、高濃度になるとアクセプタ準位が 1 種類だけ 検出され、アクセプタ評価には励起状態を考慮した分布関数が必要となった。このように高濃度 にアクセプタを添加し、フェルミ準位がアクセプタ準位と価電子帯との間にある場合、励起状態 に正孔が存在する確率が増え、アクセプタの分布関数として $f(\Delta E_A)$ が必要になった。低濃度の 場合はどちらの分布関数を用いても妥当なアクセプタ密度が得られる[14]。

図 12 には Al-doped 4H-SiC エピ膜に 200 keV の電子線を照射したときの p(T) の変化を示す [22,23,26]。図 13 には 2 種類のアクセプタ密度の照射線量依存性を示す。200 keV の電子線を照 射した場合、通常は深い欠陥(SiC ではミッドギャップ付近の C vacancy) が形成され、正孔密 度が深い欠陥に捕獲され、正孔密度が減少すると考えられている[26]。しかし、ミッドギャップ 付近の欠陥密度の増加が原因ではなく、図 13 より Al アクセプタ密度の減少が正孔密度減少の主 な原因であることが分かった。さらに、350 meV 付近のアクセプタ密度は低照射量では増加し、 高照射量では減少することが分かった[26]。

4.4 高濃度 Mg-doped GaN と高濃度 B-doped diamond のアクセプタの評価

GaN 中の Mg アクセプタ準位もダイヤモンド中の B アクセプタ準位も、SiC 中の Al アクセプ タ準位と同様に深いため、高濃度の場合励起状態が正孔密度に影響を与えることが考えられる。

 $2 \times 10^{19} \text{ cm}^{-3}$ の Mg-doped GaN 及び $2 \times 10^{17} \text{ cm}^{-3}$ の B-doped ダイヤモンドの場合、p(T)から アクセプタ密度を正しく評価するためには、励起状態を考慮した分布関数 $f(\Delta E_A)$ を用いる必要 があることが明らかになった[13,25]。

5. まとめ

多数キャリア密度に影響を及ぼす不純物及び欠陥の評価方法として、ホール効果測定の多数キャリア密度の温度依存性を用いて評価する新しい方法(FCCS法)を提案し、その方法の妥当性をワイドギャップ半導体に適用し、実験的に検証した。

謝辞

Undoped 3C-SiC を提供していただいた京都工芸繊維大学の西野茂弘元教授(現在ワイドギャップ マテリアルズ代表取締役)及び HOYA の長澤弘幸氏、n型 4H-SiC を提供していただいた 京都大学の松波弘之元教授(現在JSTイノベーションプラザ館長)と木本恒暢教授に感謝します。 n型とp型 4H-SiC のドーパント密度依存性に関しては、NEDO「超低損失電力素子技術開発」 プロジェクトの支援に感謝します。Al-implanted 4H-SiC を提供していただいた三菱電機の杉本 博司氏、電子線照射をしていただいた日本原子力研究開発機構の大島武氏、Mg-doped GaN を提 供していただいた日本工業大学の鈴木敏正教授、B-doped diamond を提供していただいた住友電 工の武部俊彦氏および産業技術総合研究所の鹿田真一氏に感謝します。

参考文献

- [1] H. Matsuura and K. Sonoi, Jpn. J. Appl. Phys., 35, L555 (1996).
- [2] H. Matsuura, Jpn. J. Appl. Phys., 35, 5297 (1996).
- [3] H. Matsuura, Jpn. J. Appl. Phys., 35, 5680 (1996).
- [4] 松浦秀治, 園井量英, **J80-CII**, 95 (1997).
- [5] H. Matsuura, Jpn. J. Appl. Phys., 36, 3541 (1997).
- [6] H. Matsuura, Y. Uchida, T. Hisamatsu, and S. Matsuda, Jpn. J. Appl. Phys., 37, 6034 (1998).
- [7] H. Matsuura, T. Kimoto, and H. Matsunami, Jpn. J. Appl. Phys., 38, 4013 (1999).
- [8] H. Matsuura, Jpn. J. Appl. Phys., 38, 5176 (1999).

- [9] H. Matsuura, Y. Masuda, Y. Chen, and S. Nishino, Jpn. J. Appl. Phys., 39, 5069 (2000).
- [10] H. Matsuura, Y. Uchida, N. Nagai, T. Hisamatsu, T. Aburaya, and S. Matsuda, Appl. Phys. Lett., 76, 2092 (2000).
- [11] H. Matsuura, K. Morita, K. Nishikawa, T. Mizukoshi, M. Segawa, and W. Susaki, Jpn. J. Appl. Phys., 41, 496 (2002).
- [12] H. Matsuura, New J. Phys., 4, 12.1 (2002).
- [13] H. Matsuura, D. Katsuya, T. Ishida, S. Kagamihara, K. Aso, H. Iwata, T. Aki, S.-W. Kim, T. Shibata, and T. Suzuki, Phys. Status Solidi, C 0, 2214 (2003).
- [14] H. Matsuura, J. Appl. Phys., 95, 4213 (2004).
- [15] H. Matsuura, M. Komeda, S. Kagamihara, H. Iwata, R. Ishihara, T. Hatakeyama, T. Watanabe, K. Kojima, T. Shinohe, and K. Arai, J. Appl. Phys., 96, 2708 (2004).
- [16] S. Kagamihara, H. Matsuura, T. Hatakeyama, T. Watanabe, M. Kushibe, T. Shinohe, and K. Arai, J. Appl. Phys., 96, 5601 (2004).
- [17] H. Matsuura, H. Nagasawa, K. Yagi, and T. Kawahara, J. Appl. Phys., 96, 7346 (2004).
- [18] H. Matsuura and K. Nishikawa, J. Appl. Phys., 97, 093711 (2005).
- [19] H. Matsuura, Hirofumi Iwata, Sou Kagamihara, Ryohei Ishihara, Masahiko Komeda, Hideaki Imai, Masanori Kikuta, Yuuki Inoue, Tadashi Hisamatsu, Shirou Kawakita, Takeshi Ohshima and Hisayoshi Itoh, Jpn. J. Appl. Phys., 45, 2648 (2006).
- [20] H. Matsuura, T. Morizono, Y. Inoue, S. Kagamihara, A. Namba, T. Imai, and T. Takebe, Jpn. J. Appl. Phys., 45, 6376 (2006).
- [21] H. Matsuura, Phys. Rev. B, 74, 245216 (2006).
- [22] H. Matsuura, Sou Kagamihara, Yuji Itoh, Takeshi Ohshima and Hisayoshi Itoh, Microelectronic Engineering, 83, 17 (2006).
- [23] H. Matsuura, Sou Kagamihara, Yuji Itoh, Takeshi Ohshima and Hisayoshi Itoh, Physica B, 376-377, 342 (2006).
- [24] H. Matsuura, Kazuhiro Nishikawa, Masaharu Segawa and Wataru Susaki, Jpn. J. Appl. Phys., 45, 6373 (2006).
- [25] H. Matsuura, Tatsuya Morizono, Yuuki Inoue, Sou Kagamihara, Akihiko Namba, Takahiro Imai and Toshihiko Takebe, Jpn. J. Appl. Phys., 45, 6376 (2006).
- [26] H. Matsuura, N. Minohara, Y. Inagawa, M. Takahashi, T. Ohshima and H. Itoh, Materials Science Forum, 556-557, 379 (2007).
- [27] H. J. Hoffmann, Appl. Phys., 19, 307 (1979).
- [28] B. Sapoval and C. Hermann, Physics of Semiconductor (New York, Springer-Verlag, 1993), pp. 112-114.
- [29] R. A. Smith, Semiconductors, 2nd edn. (London, Cambridge University Press, 1978), p. 92.

図1 電子密度の温度依存性のシミュレーション

図2 電子密度の温度依存性の入力

図3 電子密度の温度依存性(丸印が実験デー タであり、実線がスプライン関数で補間し たデータである。)

 $\boxtimes 4 \quad H(T,-0.000254)$

図 8 3C-SiC のドナー準位の全ドナー密度 依存性

表 1	高濃度の Al を含む 4H-SiC 中のアクセ
	プタ評価の分布関数の依存性

	N_{A}	ΔE_{A}	N_{D}
	[cm ⁻³]	[meV]	[cm ⁻³]
$f(\Delta E_{\rm A})$	5.5×10^{18}	177	7.4×10^{16}
$f_{\rm FD}(\Delta E_{\rm A})$	3.5×10^{19}	162	1.3×10^{18}
$f_{\rm conv}(\Delta E_{\rm A})$	6.0×10^{20}	176	1.4×10^{19}

図 12 200 keV 電子線照射による Al-doped 4H-SiC の正孔密度の温度依存性の 変化

図 13 200 keV 電子線照射による Al-doped 4H-SiC 中のアクセプタ密度の変化