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ABSTRACT
A method for uniquely determining the densities and 
energy levels of impurities from the temperature 
dependence of the majority-carrier concentration in 
wide band gap semiconductors is discussed.  It is 
demonstrated that the proposed graphical analysis 
method can evaluate the number of impurity species 
and can determine those densities and energy levels 
uniquely.  In the case that the Fermi levels in p-type 
SiC, GaN and diamond are located between EA and 
EV, the excited states of acceptors strongly affect the 
hole concentration, indicating that the distribution 
function including the influence of the excited states 
should be applied to determining the density and 
energy level of acceptor from the temperature –
dependent hole concentration.
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Determination of densities and energy levels 
of impurities from n(T) or p(T) obtained from 

Hall-effect measurements
ln n(T)-1/T or ln p(T)-1/T

The analysis of ln n(T)-1/T or ln p(T)-1/T curve 
cannot be applied to semiconductors with more 
than one types of impurities or compensated 
semiconductors.

Curve-fitting 
It is difficult to obtain reliable densities and 
energy levels of impurities by fitting an n(T) or 
p(T) simulation to the experimental data, because 
it is necessary to assume the number of impurity 
species before the curve-fitting procedure.

A graphical peak analysis method can determine 
the densities and energy levels of impurities 
without any assumptions regarding impurities 
species.

Free Carrier Concentration Spectroscopy
(FCCS)
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FCCS
Definition
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The FCCS signal has a peak at the temperature 
corresponding to  each impurity level.

From each peak, the density and energy level 
of the corresponding impurity can be 
accurately determined.
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32 μm-thick undoped 3C-SiC
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FCCS signal in which the influence of 
donor with ED2 is removed
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: Experimental data
: n(T) simulation
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                 ND1 = 3.8x1016     cm-3

                 ED2 = EC - 0.051  eV
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ND3 = 1.1x1017     cm-3
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The n(T) simulation is in good agreement with 
the experimental n(T), indicating that the 
values determined by FCCS are reliable.

Verification of the values obtained by FCCS
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Relationship between each donor level 
and the total donor density
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Heavily doped p-type wide band gap 
semiconductor

: B-doped diamond
: Mg-doped GaN
: Heavily Al-doped 6H-SiC
: Lightly Al-doped 6H-SiC
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Comparison of Fermi level with 
acceptor level

: B-doped diamond
: Mg-doped GaN
: Heavily Al-doped 6H-SiC
: Lightly Al-doped 6H-SiC
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Except for lightly Al-doped 6H-SiC, the Fermi 
levels are located between EA and EV.

The excited states of acceptors should affect p(T).
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Distribution function for acceptors
Fermi-Dirac distribution function
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Distribution function including the influence of the 
excited states of the acceptor
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Effective acceptor degeneracy factor

Ensemble average energy of holes at the 
ground and excited state levels
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FCCS of heavily Al-doped 6H-SiC

Experimental H(T,Eref)

Simulated H(T,Eref)
: fFD(ΔEA)
: f(ΔEA)
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The yellow line is in agreement with the 
experimental FCCS better than the red line.
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Curve-fitting procedure
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1. The red line overlaps with the yellow line.
2. Both the lines are in good agreement with the 

experimental p(T).
3. NA for fFD(EA) is much higher than NA for f(EA).

It is difficult to determine NA, EA and ND by 
the curve-fitting procedure.
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Comparison of NA
with doping density

fFD(EA) f (EA)

NA [cm-3] NA [cm-3]

Doping 
density 
[cm-3]

Heavily doped 
6H-SiC

2.5x1019 3.2x1018 4x1018

Lightly doped 
6H-SiC

4.9x1015 4.1x1015 6x1015

Mg-doped GaN 8.5x1019 6.0x1018 2x1019

B-doped 
diamond

9.7x1017 2.8x1017 2x1017

NA should be less than or equal to the doping 
density, because NA is the density of dopant atoms 
at substitutional sites

f(EA) is more appropriate for the distribution 
function for acceptors in heavily doped p-type 
SiC, GaN and diamond
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Summary
1. It was demonstrated that FCCS (a graphical 

peak analysis method without any 
assumptions regarding impurity species) is 
a powerful method for determining 
densities and energy levels of impurities.

2. In undoped 3C-SiC, FCCS could detect 
three types of donor species, and could 
determine those densities and energy levels.

3. In p-type SiC, GaN and diamond whose 
EF(T) were located between EA and EV, 
p(T) was strongly affected by the influence 
of the excited states of acceptors.

4. In order to determine the density and 
energy level of acceptors from p(T), the 
proposed distribution function including 
the influence of the excited states of 
acceptors was required.
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WINDOWS application software
FCCS (Free Carrier Concentration Spectroscopy)
DCTS (Discharge Current Transient Spectroscopy)
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