Possibilities for Thick, Simple-Structure Silicon X-Ray Detectors Operated by Peltier Cooling

Hideharu Matsuura<sup>1</sup>, Derek Hullinger<sup>2</sup>, Ryota Okada<sup>1</sup>, Seigo Kitanoya<sup>1</sup>, Seiji Nishikawa<sup>1</sup>, and Keith Decker<sup>2</sup>

 <sup>1</sup>Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan
<sup>2</sup>MOXTEK, Inc., 689 W. 1285 N., Orem, UT 84057, USA

IC-MASD2011, May 17th, 2011, Kos Island, Greece





# Pin diodes for X-ray detectors



# **Transportable X-ray detectors require**

- 1. large active area for high sensitivity
- 2. small capacitance of detector for high energy resolution
- **3.** operation by Peltier Cooling



The p-rings are electrically coupled using MOSFET to form an adequate electric field in SDD. Fabrication processes are complicated. SDD is very expensive.

## Requirement of Si thickness

| Element           | <sup>48</sup> Cd | <sup>50</sup> Sn | <sup>51</sup> Sb | 53I          | <sup>55</sup> Cs | <sup>56</sup> Ba |  |
|-------------------|------------------|------------------|------------------|--------------|------------------|------------------|--|
|                   | $K_{\alpha}$     | $K_{\alpha}$     | $K_{\alpha}$     | $K_{\alpha}$ | $K_{\alpha}$     | $K_{\alpha}$     |  |
| Energy [keV]      | 23.1             | 25.2             | 26.3             | 28.5         | 30.8             | 32.0             |  |
| Si Thickness [mm] | Absorption [%]   |                  |                  |              |                  |                  |  |
| 0.3               | 19               | 14               | 12               | 10           | 8                | 7                |  |
| 0.6               | 35               | 27               | 23               | 18           | 15               | 13               |  |
| 1.0               | <u>51</u>        | 41               | 35               | 29           | 23               | 21               |  |
| 1.5               | <u>65</u>        | <u>54</u>        | 48               | 40           | 33               | 30               |  |
| 2.0               | <u>76</u>        | <u>64</u>        | <u>58</u>        | 49           | 41               | 38               |  |

K-line X-ray fluorescence: <sup>11</sup>Na(1.0 keV) ~ <sup>50</sup>Sn(25.2 keV) L-line X-ray fluorescence: <sup>51</sup>Sb(3.6 keV) ~ <sup>92</sup>U(13.6 keV) **Si thickness is required to be thicker than 1.5 mm** 

# Aim of our study

X-ray detectors that meet the following requirements are materialized.

- 1. Large active area for high sensitivity
- 2. Small capacitance of detector for high energy resolution
- **3. Operation by Peltier Cooling for transportable unit**
- 4. Simple structure for inexpensive detector
- 5. Thick Si wafer for high sensitivity of high energy X-rays
- 6. Only one high voltage bias for inexpensive unit

# **Proposal of New X-ray detector**

- 1. Large active area for high sensitivity
- 2. Small capacitance of detector for high energy resolution
- 3. Operation by Peltier Cooling for transportable unit
- 4. Simple structure for inexpensive detector

Prior art SDD

Simple-structure SDD (SSDD) Without MOSFET





Matsuura Laboratory

Anode  $(n^+)$  Rings  $(p^+)$ 



# Produced electron-hole pair in depletion region





# Produced electron-hole pair in depletion region





# Produced electron-hole pair in bulk





# Produced electron-hole pair in bulk





## Reverse bias required to deplete a whole i layer of **pin diode**

| Resistivity $[k \Omega cm]$        | 2                                               | 10          | 20          | 40                 |  |  |  |
|------------------------------------|-------------------------------------------------|-------------|-------------|--------------------|--|--|--|
| N <sub>D</sub> [cm <sup>-3</sup> ] | $2x10^{12}$                                     | $4x10^{11}$ | $2x10^{11}$ | 1x10 <sup>11</sup> |  |  |  |
| Si Thickness [mm]                  | Applied voltage required to deplete i layer [V] |             |             |                    |  |  |  |
| 0.3                                | <u>137</u>                                      | <u>27</u>   | <u>14</u>   | 2                  |  |  |  |
| 0.6                                | <u>547</u>                                      | <u>109</u>  | <u>55</u>   | <u>27</u>          |  |  |  |
| 1.0                                | 1519                                            | <u>304</u>  | <u>152</u>  | <u>76</u>          |  |  |  |
| 1.5                                | 3417                                            | <u>683</u>  | <u>342</u>  | <u>171</u>         |  |  |  |
| 2.0                                | 6074                                            | 1215        | <u>607</u>  | <u>304</u>         |  |  |  |

Higher-resistivity Si substrate is required to operate at adequate high reverse bias.

# Conditions of the prior art SDD



SDD currently in use Si thickness: 0.3 – 0.5 mm **resistivity: 2 k Ocm** Applied voltages 0.3-mm-thick case Cathode: - 50 V outermost p-ring: -100 V innermost p-ring: - 10 V

Fabrication of SSDD

# To investigate a possibility of use of higherresistivity Si substrate.



Two type of SSDD Si resistivity: 2 k  $\Omega$ cm  $6.5 \mathrm{k}\Omega \mathrm{cm}$ thickness: 0.3 mm Applied voltages cathode : -80 V outermost p-ring: -80 V -42.5 V inner p-ring: innermost p-ring: -5 V

## Reverse Current of Anode





To operate SSDD using high-resistivity Si the same voltage should be applied to the cathode and prings, that is,

 Outermost p-ring is applied to a negative bias that is the same as the cathode.
Inner p-rings are floating.



# **Proposal of second new structure**

SSDD

**Gated SDD (GSDD)** 

Oxide layer

Anode (n)

n<sup>-</sup> Si substrate (i)

liates

Ring (p)



the cathode.

2. Inner p-rings are floating.

Cathode (p) P-ring and all the gates are applied to a negative bias that is the same as the cathode.

# SSDD and GSDD require only one high voltage bias

# **Simulation and Fabrication of GSDD**



# Potential at SiO<sub>2</sub>/Si interface



The potential at the  $SiO_2/Si$ interface is strongly dependent on the fixed oxide charge and the gap between the gates.



# **Experimental result:** <sup>55</sup>Fe spectrum







# Simulation of GSDD with 1.5-mm-thick Si



# Potential Distribution in Si



# Potential Distribution in Si



# Potential Distribution in Si



Electrons produced by X-rays can flow smoothly to the anode.

# Summary

From experimental results and simulations, we showed the possibilities for Si X-ray detectors satisfied with the followings.

- 1. Large active area for high sensitivity
- 2. Small capacitance of detector for high energy resolution
- 3. Operation by Peltier Cooling for transportable unit
- 4. Simple structure for inexpensive detector
- 5. Thick Si wafer for high sensitivity of high energy X-rays
- 6. Only one high voltage bias for inexpensive unit