講義日程

講義ノートURL

http://www.osakac.ac.jp/labs/s-jeong/mechadesign1

第1回: 機械設計及び機械材料

第2回: 許容応力1(静荷重、繰返し荷重)

第3回: 許容応力2(衝撃荷重、応力への影響因子)

第4回: 安全率

第5回: ねじの基礎

第6回: ねじの締め付け力と締め付けトルク

第7回: ねじの強度

第8回: 中間試験

第9回: キー、軸の設計

第10回: 軸継手

第11回: クラッチ

第12回: リベット継手、溶接継手とその設計

第13回: はめあい及び表面粗さ

第14回: 前期試験

第15回: まとめ

講義目標

- 1. リベット継手の設計法について理解する
- 2. 溶接継手の設計法について理解する

2.3 リベット及びリベット継手

重ね合せた板の穴に軸部を差し込んで、 軸端をかしめて締結する要素

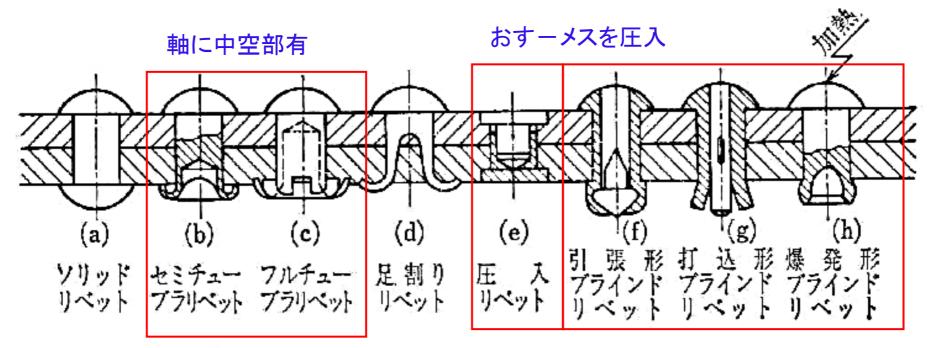
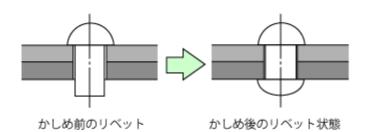
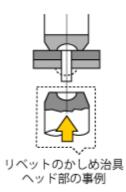
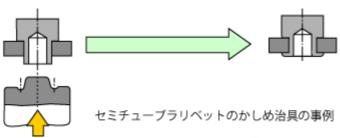
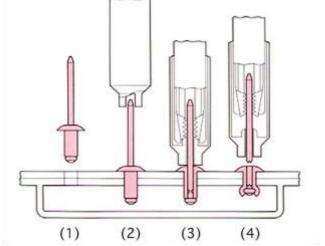




図 2・34 リベットの種類 差し込んだ側からかしめが可能

┪リベット結合の例


ーソリッドリベット



ーセミチューブリベット

- 引張り型ブラインドリベット

■リベット継ぎ手の種類

①形式による分類

重ね継手、突合せ継手 { 片目板 両目板

②リベットの列数による分類

単列、複列 ^{並列} 単列、複列 ^{千鳥形}

③せん断面の数

- 1面せん断リベット

: 重ね継手、片目板突合せ

-2面せん断リベット

:両目板突合せ

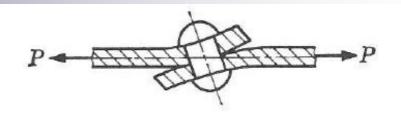
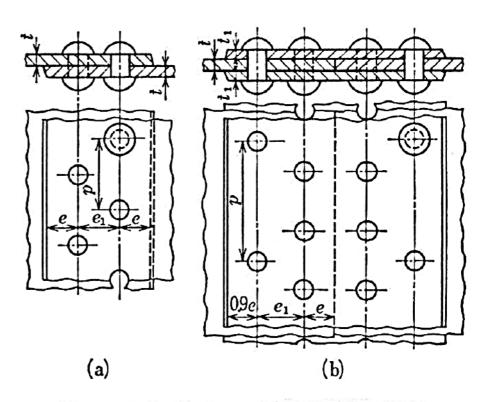



図 2・36 重ね継手に生じる曲げ作用

- (千鳥形)
- (a) 2列重ね継手 (b) 両目板2列突合 せ継手

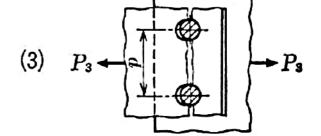
図 2・37

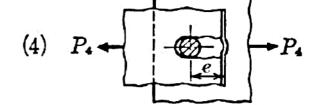
■リベット継手の強さ

1. 摩擦力によって外力を支える場合

$$P = \mu \sigma \frac{\pi}{4} d_1^2$$


- 2. せん断力で支える場合
 - (1) リベットせん断 $P_1 = (\pi/4)d_1^2 au$
 - (2) リベット軸及び穴面の押しつぶし $P_2 = d_1 t \sigma_c$
 - (3) リベット穴間での板の切断 $P_3 = t(p-d_1)\sigma_1$
 - (4) リベット穴と板の端間での板のせん断


$$P_4 = 2(e - d_1/2)t\tau_1 = (2e - d_1)t\tau_1$$


(5) リベット穴と板の端間での板の破裂

$$P_5 = (2e - d_1)^2 t \sigma_{b1} / 3 d_1$$

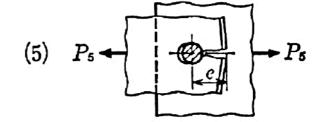
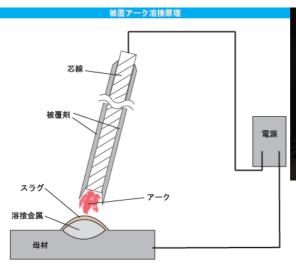


図 2·38 リベット継手 の破壊の様式

■リベット継手の効率

リベット継手の強さ リベット継手の効率= リベット穴のない場合の板の引張り強さ

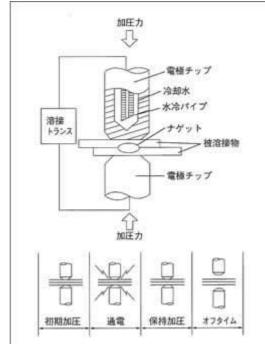

(1) 板の効率
$$\eta_p = \frac{(p-d_1)t\sigma_1}{pt\sigma_1} = \frac{p-d_1}{p}$$
 リベット間ピッチ
$$\eta_r = \frac{\pi d_1^2 (n_1 + k n_2)\tau}{4pt\sigma_1}$$
 2面せん断リベット数

(3)連合効率

$$\eta_{e} = \frac{(p - nd_{1})t\sigma_{1} + \pi/4 \cdot d_{1}^{2}(n_{1} + kn_{2})\tau}{pt\sigma_{1}} = \frac{p - nd_{1}}{p} + \frac{\pi d_{1}^{2}(n_{1} + kn_{2})\tau}{4pt\sigma_{1}}$$

2.4 溶接継手

ー融接(アーク溶接):機械、船 舶などの鋼構造物の溶接



ーろう接:銅合金や気密、水密が 要求される薄板物の溶接

ー圧接(スポット溶接): 自動車、家電製品などの薄 板ものの溶接

■溶接継手の種類

開先(グルーブ):母材に設けた溝

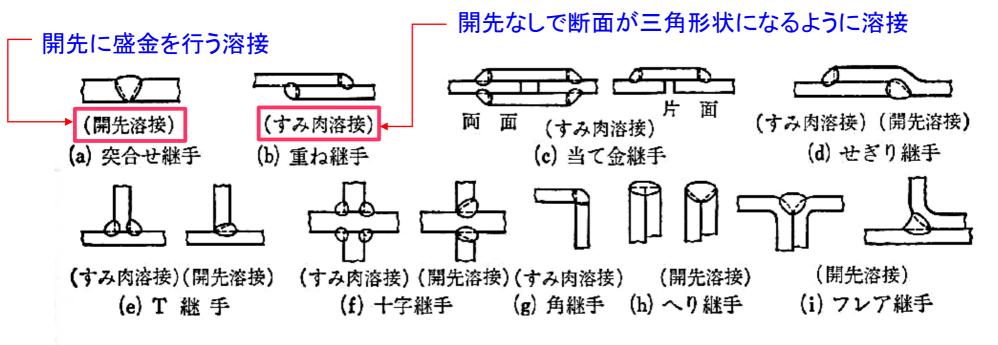


図 2・46 溶接継手の種類

2つの部材の完全な結 合のためには、接合面 に十分な溶こみが必要

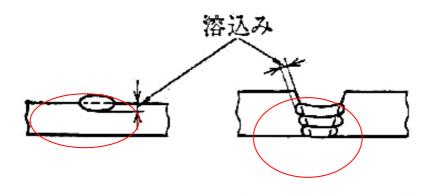
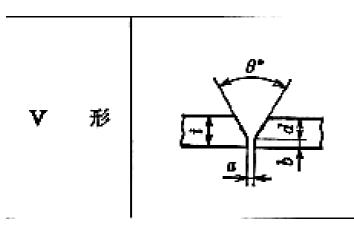
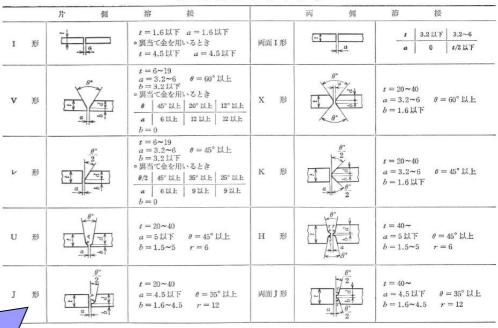
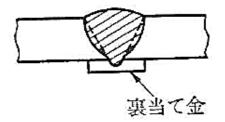



図 2・47 溶 込 み


■開先の形状


a:ルート間隔、b:ルート面

r:ルート半径、d:開先深さ

θ:開先角度(θ/2:ベベル角度)

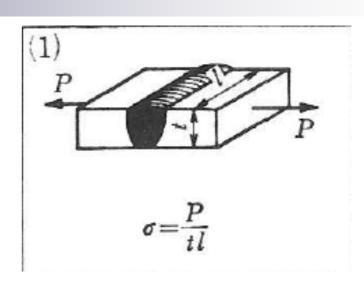
溶接の諸欠点は開先形状により影響

■開先形状の選定

図 2.50 裏当て金

- ①開先空間:接合面に十分な溶けこみが与えられれば、小さいほうがよい。
- ②ルート間隔: 開先角度が小さいほど大きくとる
- ③ルート間隔が大きすぎ、又は片側溶接の場合: 裏当て金を使用

■溶接継手の強さ


(1)静的強さ

一突合せ継手

溶接厚さ: 板厚tを基準 実際の長さ

溶接長さℓℓ ≠ ℓ→ℓ

有効溶接長さ

ーすみ肉溶接継手:

溶接厚さ:

$$s_t = s \cdot \cos 45 = 0.707s$$
$$t \ge s \ge 1.3\sqrt{t}$$

溶接長さ:

$$l_e = l - 2(s_t \sim s) = l - (1.4 \sim 2)s$$

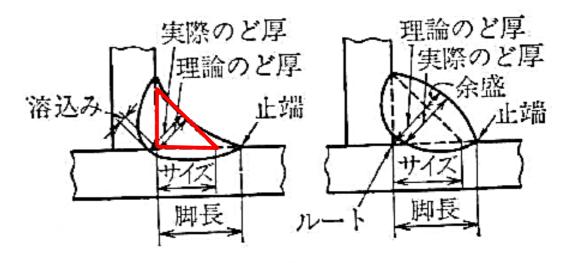
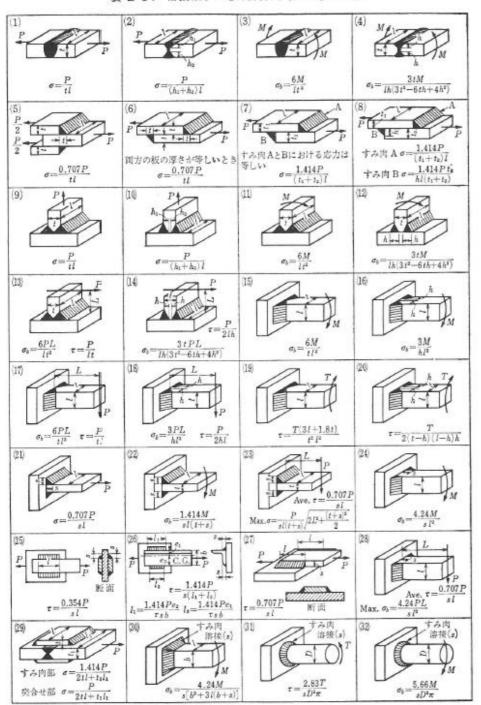
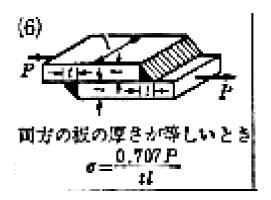




図 2.52 すみ肉の寸法

表 2·14 溶接継手の応力計算式 (C.H. Jennings)

(2)疲れ強さ

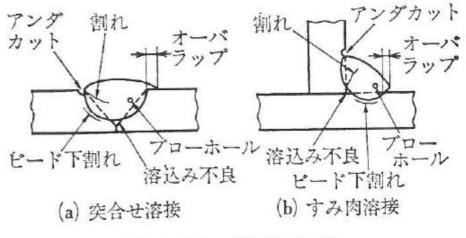
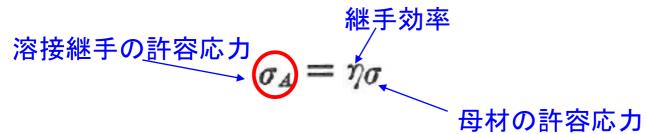



図 2.53 溶接欠陥

溶接欠陥による応力集中

■溶接の許容応力

表 2·15 溶接継手の効率 (JIS B 8243)

分類番号	溶接継手の種類	溶接継手の効率 (%)		
		全線放射線試験を行うもの	部分放射線試 験を行うもの	放射線試験を 行わないもの
(1)	突合せ両側溶接またはこれと同等以上 と見なされる突合せ片側溶接継手	100	95	70
(2)	裏当て金を使用した突合せ片側溶接継 手で当て金を残す場合	90	85	65
(3)	(1), (2)以外の突合せ片側溶接継手	_	_	60
(4)	両側全厚すみ肉重ね溶接継手	_		55
(5)	プラグ溶接を行う片側全厚すみ肉 重 ね 溶接継手	_	_	50
(6)	プラグ溶接を行わない片側全厚すみ肉 重ね溶接継手	_	_	45