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Chapter 7

DETERMINATIONMETHODS OF DENSITIES AND
ENERGY LEVELS OF IMPURITIES AND DEFECTS

AFFECTING MAJORITY-CARRIER
CONCENTRATION IN NEXT-GENERATION

SEMICONDUCTORS

Hideharu Matsuura
Osaka Electro-Communication University, Japan

Abstract

Wide bandgap semiconductors such as SiC, GaN, and diamond have a potential for
use in high power and high frequency devices, while narrow bandgap semiconductors
such as the GaSb family have a potential for near- and mid-infrared laser diodes and
photo-detectors for detecting CO , CH , NO , and SO . In these next-generation
semiconductors, it is essential to precisely determine the densities and energy levels
of dopants (donors or acceptors) as well as unintentionally-introduced impurities and
defects, which affect the majority-carrier concentrations in semiconductors.

We have developed a graphical peak analysis method called Free Carrier Concen-
tration Spectroscopy (FCCS), which can accurately determine them using the tem-
perature dependence of the majority-carrier concentration without any assumptions
regarding dopant species, impurities, and defects. We have determined the densities
and energy levels in undoped, N-doped or Al-doped SiC. Moreover, the dependence
of the energy level of each dopant species on dopant density has been obtained. From
the temperature dependence of the majority-carrier concentration in SiC irradiated by
high-energy electrons, the dependence of the density of each dopant or defect on flu-
ence has been determined.

Because wide bandgap semiconductors have a low dielectric constant and a hole
effective mass heavier than an electron effective mass, the energy levels of acceptor
species are expected to be deep. When is larger, on the other hand, the donor level of
Te in Al Ga Sb is changed from shallow to deep, just like Al Ga As. In these
semiconductors, the density of dopants determined from the temperature dependence
of the majority-carrier concentration is much higher than the concentration of dopant
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species determined by secondary ion mass spectroscopy. When the energy level of
dopant species is deep, the excited states of the dopant should affect the majority-
carrier concentration. Therefore, we have introduced the occupation function of the
dopant with deep energy level, which includes the influence of its excited states, in-
stead of the Fermi-Dirac distribution function. Using the occupation function we have
proposed, we have investigated semiconductors with deep level dopants by FCCS us-
ing the temperature dependence of the majority-carrier concentration.

Recently, high-resistivity or semi-insulating semiconductors have been required
to use as substrates of GaN field-effect transistors and as active layers of X-ray de-
tectors capable of operating at room temperature. Because these defects affect the
majority-carrier concentrations in high-resistivity or semi-insulating semiconductors
and degrade the device performance, it is required to accurately determine the densities
and energy levels of defects with deep energy levels. Transient capacitance methods
such as Deep Level Transient Spectroscopy cannot apply higher-resistivity semicon-
ductors. Therefore, we have been developing a graphical peak analysis method using
an isothermal transient current in the diode, called Discharge Current Transient Spec-
troscopy (DCTS). Using DCTS, we have determined the densities, emission rates, and
energy levels of deep defects in semi-insulating SiC and thin insulators. Moreover, the
density-of-states in high-resistivity amorphous semiconductors are investigated.

PACS 71.55.-i, 71.55.Ht, 72.20.Jv, 73.61.Le

Keywords: Determination of densities and energy levels, Next-generation semiconductor,
SiC, GaN, Diamond, InGaSb, AlGaSb, Donor, Acceptor, Deep level.

1. Introduction

In this chapter, we discuss methods to evaluate impurities and defects that affect the
majority-carrier concentration in a semiconductor whose resistivity varies from low to ex-
tremely high.

The densities and energy levels of traps (i.e., impurities or defects) have usually been
evaluated using deep level transient spectroscopy (DLTS) [1]. However, a quantitative re-
lationship between the majority-carrier concentration and the trap densities cannot be ob-
tained using DLTS. The reason for this is that in the DLTS analysis, the following approxi-
mation is assumed.

(1)

when
(2)

where is the transient capacitance after removal of the filling pulse and return to the
steady-state reverse bias voltage ( ) in the DLTS measurement sequence, is the
steady-state capacitance at , is the dopant density (i.e., donor or acceptor den-
sity), is the trap density, and is the time constant corresponding to the trap. Based
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on Eq. (2), DLTS can determine the density and energy level of the trap only when
is much lower than , indicating that the trap determined by DLTS barely affects
the majority-carrier concentration. If the densities and energy levels of traps can be deter-
mined using the experimental majority-carrier concentration, the relationship between the
majority-carrier concentration and the trap densities can be investigated directly. Therefore,
we discuss a unique method to characterize them from the temperature dependence of the
majority-carrier concentration obtained by Hall-effect measurements.

Transient capacitance methods such as DLTS, furthermore, cannot be applied to high-
resistivity semiconductors, because the measured capacitance of a diode is determined by
the thickness of the diode, not by the depletion region of the junction due to its long dielec-
tric relaxation time. For example, the resistivity ( ) of high-purity SiC is strongly affected
by intrinsic defects located in its midgap, which capture the majority carriers. Therefore, it
is necessary to investigate the nature of the deep levels in high-purity SiC. To characterize
the intrinsic defects in SiC, however, N-doped low-resistivity SiC irradiated by electrons
has been intensively investigated by DLTS [2, 3].

Thermally stimulated current (TSC) [4] is suitable for characterizing traps in high-
resistivity or semi-insulating semiconductors. The TSC signal, , is theoretically
given by

(3)

where is the electron charge, is the Boltzmann constant, is the heating rate, is the
density for an th trap, is the activation energy for the th trap, is the attempt-to-
escape frequency for the th trap, is the temperature at which heating is started,
is the steady-state leakage current at a measurement temperature ( ), and is the electrode
area. It should be noted that Eq. (3) is available only in thermionic emission processes. Pa-
rameters for fitting a curve to the experimental are the sets of , and .
However, it is difficult to analyze experimental TSC data when traps with close emission
rates are included. Moreover, because the effect of pyroelectric currents and the tempera-
ture dependence of the steady-state leakage current must be considered in the TSC analysis,
an isothermal measurement is more suitable for characterizing traps than TSC is. There-
fore, we discuss a unique method to characterize them using isothermal transient current
measurements.

2. Temperature Dependence of Majority-Carrier
Concentration

The temperature dependence of the majority-carrier concentration has a lot of information
on impurities and defects. In n-type semiconductors, for example, the temperature depen-
dence of the electron concentration, , can be expressed as [5]

(4)
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Figure 1. Simulations of temperature-dependent electron concentration for three cases of
one donor, two donors, and one donor and one acceptor.

in the temperature range in which a temperature-dependent hole concentration, , is
much less than , where and are the density and energy level of an th donor,

and are the density and energy level of a th electron trap that is negative when
it captures an electron from the conduction band, is the acceptor density, and

are the Fermi-Dirac distribution function for donors and electron traps, given
by [5]

(5)

and is the Fermi level at . From , therefore, we can determine the densities
and energy levels of donors and electron traps.

The temperature dependencies of the majority-carrier concentration and mobility can
usually be obtained by Hall-effect measurements. When a sample is an n-type epilayer on
a substrate, for example, the substrate should be a p-type or semi-insulating semiconductor.

Let us evaluate donors using the simulations for 4H-SiC in the cases of one donor
( ), two donors ( ), and one donor and one acceptor ( ) in Fig. 1. Here, the density and
energy level are cm and eV for Donor1, and cm and

eV for Donor2, respectively, and the acceptor density is cm .
In the case of one donor, which is described in university text books, can be

expressed by the following two equations:

(6)

and

(7)
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where
(8)

(9)

is the donor density, is the conduction band maximum, is the electron effective
mass, is the number of equivalent minima in the conduction band, and is the Planck’s
constant. At low temperatures where

(10)

the following equation is derived using Eqs. (6) and (7).

(11)

(12)

Therefore, the donor level ( ) is determined from the slope at low temperatures in
Fig. 1. Moreover, is equal to the saturation value in Fig. 1.

From each at low temperatures in Fig. 1, the straight solid, broken and dotted-
dashed lines can be drawn for the cases of one donor, two donors, and one donor and one
acceptor, respectively. We can obtain the correct results that the density and energy level
of the donor are determined to be cm and eV for , respectively. On the
other hand, the density and energy level of the donor are determined to be cm
and eV for , and cm and eV for , which are incorrect results.
Therefore, this analysis can be applied only when we can confirm that the semiconductor
includes only one type of donor species.

In the case of one donor and one acceptor, the following equation is derived using
Eqs. (6) and (7).

(13)

We define as

(14)

and we try to search the values of and ( ) that make the relationship between
and straight. From the slope of the straight line, the donor level can be determined

using Eq. (13).
In the case of more than two types of donor species, the curve-fitting method is applied.

Using

(15)
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and Eq. (7), the can be simulated. By a least-squares fit of the simulation to
the experimental , the fitting parameters of sets of and as well as are
obtained. Prior to the analysis, the number of donor species and the initial values of the
parameters should be assumed. The assumptions, however, strongly affect the final results.

In the differential Hall-effect spectroscopy (DHES) [6, 7],

(16)

where and . When

(17)

Eq. (16) can be rewritten approximately as

(18)

When we define as

(19)

the peak of the - characteristics occurs at

(20)

However, the differential of the experimental data results in an increase in the observational
errors.

As a consequence, we adopt the following criteria for an evaluation function that can
determine the densities and energy levels of donors and electron traps from the experimental

;

1. not to require any assumptions regarding donor species and electron traps before
analysis,

2. not to differentiate the experimental data,

3. to have a peak value at the temperature corresponding to the energy level of each
donor or electron trap,

4. to be able to verify the values determined.
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3. Free Carrier Concentration Spectroscopy

3.1. Basic Concept

Transient capacitance methods, such as DLTS [1] and isothermal capacitance transient spec-
troscopy (ICTS) [8], can uniquely determine the densities and energy levels of traps in
semiconductors, because each peak in the signal corresponds one-to-one to a trap. For
example, the ICTS signal is defined as . Since is theoretically
described as the sum of , it has a peak value of at a peak
time of . Here, is the emission rate of an th trap. Therefore, the function

plays an important role in the ICTS analysis.
To analyze the experimental , we introduced the function theoretically described

as the sum of [9, 10]. The function
has a peak at . If we can introduce a function in which the peak appears
at , we can shift the peak temperature to the measurement
temperature range by changing the parameter . This indicates that we can determine

and in a wide range of donor levels in a limited measurement temperature range.
Therefore, the function to be evaluated should be approximately described as the sum of

. It should be noted that and determined by
this method are independent of .

3.2. Theoretical Consideration

3.2.1. n-type Semiconductors

From Eqs. (4) and (7), a favorable function to determine , , , and
can be defined as

(21)

Substituting Eq. (4) for one of the in Eq. (21) and substituting Eq. (7) for the other
in Eq. (21) yield

(22)

where
(23)

(24)
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Figure 2. Five cases. The Fermi level moves from LowT to HighT as the measurement
temperature rises.

and is the compensating density given by

(25)

The function
(26)

in Eq. (22) has a peak value of at a peak temperature

(27)

Although the actual of is slightly different from the calculated
by Eq. (27) due to the temperature dependence of , we can easily determine the
accurate values of ( and ) or ( and ) from the peak of the experimental

, using a personal computer. TheWindows application software for FCCS can be
freely downloaded at our web site (http://www.osakac.ac.jp/labs/matsuura/). This software
can also evaluate them by using the curve-fitting method, DHES, and the other methods
mentioned in Section 2.

Let us consider the meaning of using Fig. 2. As the measurement temperature
rises, the Fermi level moves from LowT to HighT in Fig. 2. In Fig. 2(a), the Fermi level
crosses in the temperature range of measurement. So, we can determine and .
All the acceptors are negatively ionized. Therefore,

(28)

and is positive.
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Because the Fermi level does not cross in Fig. 2(b), we cannot determine .
All the donors are positively ionized, and all the acceptors are negatively ionized in the
temperature range of measurement. Therefore

(29)

and is negative because the conduction type is n-type.
Because the Fermi level crosses and in Fig. 2(c), we can determine ,
, , and . All the donors with are positively ionized, and all the acceptors

are negatively ionized in the temperature range of measurement. Because all the donors
with are neutral, they do not affect the electron concentration in the measurement
temperature range. Therefore

(30)

Because the Fermi level crosses , , and in Fig. 2(d), we can evaluate ,
, , , , and . All the electron traps with are negatively ionized

because they capture electrons, and all the acceptors are negatively ionized. Therefore

(31)

and is positive. Here, electron traps are negative when they capture electrons, while
they are neutral when they emit electrons.

Because the Fermi level crosses and in Fig. 2(e), we can evaluate ,
, , and . All the donors are positively ionized, all the electron traps with
are negatively ionized because they capture electrons, and all the acceptors are nega-

tively ionized in the temperature range of measurement. Therefore

(32)

Using FCCS, the densities and energy levels are determined from for the case
of two donors shown by in Fig. 1. Figure 3(a) shows calculated by Eq. (21).
The peak temperature and value of are K and , from
which the energy level ( ) and density ( ) of the corresponding donor species are
determined as meV and .

In order to investigate another donor species included in this semiconductor, the FCCS
signal of , in which the influence of the previously determined donor species is
removed, is calculated using the following equation. It is clear from Eq. (22) that

(33)

is not influenced by the donor with . Figure 3(b) depicts . Since
a peak appears in this figure, another donor species is included. Using the peak tempera-
ture of K and the peak value of , the donor level ( )
and the donor density ( ) are determined as meV and . The
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Figure 3. FCCS signal for case of two donors in Fig. 1; (a) , (b) ,
and (c) curve fitting using values determined by FCCS.
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FCCS signal of , in which the influences of two donor species previously de-
termined are removed, is calculated. However, is nearly zero, indicating that
this semiconductor includes two types of donor species. Since this donor level is consid-
ered to be shallowest in the measurement temperature range, is determined to be

from the value of the signal at the lowest temperature.
Since it is found that two types of donor species are included and the approximate

values of , , , , and were estimated, the curve-fitting method
can be carried out. Figure 3(c) shows the result by the curve-fitting procedure. By the fine
adjustment, the values of , , , , and are finally determined to
be meV, , meV, , and ,
respectively. The determined donor levels and densities are quite reasonable. Although

determined by FCCS is not zero, the value is much less than the donor densities. It
is, therefore, elucidated that FCCS can accurately determine the densities and energy levels
of donors from .

3.2.2. p-type Semiconductors

From the charge neutrality condition, can be written as [5]

(34)

in the temperature range in which is much less than , where is the
Fermi-Dirac distribution function for acceptors and hole traps, which is given by [5]

(35)

and are the density and energy level measured from the valence band maximum
( ) of an th acceptor, respectively, and are the density and energy level
measured from of a th hole trap, and is the Fermi level measured from at
.
On the other hand, using the effective density of states in the valence band,

is expressed as [5]

(36)

where
(37)

(38)

is the hole effective mass.
The FCCS signal is defined as

(39)



312 Hideharu Matsuura

n-type 3C-SiC epilayr

1000/T  (K-1)

E
le

ct
ro

n
C

on
ce

nt
ra

tio
n

(c
m

-3
)

: Experimental n(T)
: n(T) simulation

1 2 3 4 5 6 7 8 9 10 11 12 13
1016

1017

H
(T

,-
0.

00
02

54
)

(x
10

38
cm

-6
eV

-2
.5

)

H
2(

T,
-0

.0
07

02
3)

(x
10

37
cm

-6
eV

-2
.5

)

Temperature  (K)

Peak1

Peak2

Peak3

: H(T,Eref)
: H2(T,Eref)

n-type 3C-SiC epilayer

100 200 300 400 500
1

2

6

7

8

9

(a) (b)

Figure 4. Temperature dependence of electron concentration for undoped 3C-SiC epilayer;
(a) experimental and simulated and (b) FCCS signals of and .

Substituting Eq. (34) for one of the in Eq. (39) and substituting Eq. (36) for the other
in Eq. (39) yield

(40)

where
(41)

and
(42)

3.3. Experimental Results and Discussion

3.3.1. Determination of Densities and Energy Levels of Dopants

Figure 4(a) shows the experimental for an undoped n-type 3C-SiC epilayer [11], de-
noted by . Figure 4(b) depicts the FCCS signal of , denoted by . The
peak temperature and value of are K and ,
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Figure 5. Experimental and simulated for n-type 4H-SiC (a) and n-type 6H-SiC (b).

respectively, from which the energy level ( ) and density ( ) of the corresponding
donor species are determined to be meV and , respectively.

Figure 4(b) also shows , denoted by . Since two peaks appear,
other donor species are included in this epilayer. The low peak temperature and value
of are K and , respectively, and the high
peak temperature and value are K and , respectively. The
energy level ( ) and density ( ) of the donor species corresponding to the peak
at the low temperature are determined as meV and , respectively,
and the energy level ( ) and density ( ) of the donor species corresponding to
the peak at the high temperature are determined to be meV and ,
respectively. However, is nearly zero, indicating that this epilayer includes
three types of donor species. Since is shallowest in the measurement temperature
range, is determined to be from the value of at the
lowest temperature.

In order to verify the values obtained by FCCS, the is simulated using Eqs. (4)
and (7). The solid line in Fig. 4(a) represents the simulation, and is in good agreement
with the experimental , indicating that the values determined by FCCS are reliable.

Suzuki et al. [12] insisted that the meV donor species came from nonstoichiomet-
ric defects in unintentionally doped films. From photoluminescence measurements, Freitas
et al. [13] and Kaplan et al. [14] insisted that the substitutional N donor level was
meV. On the other hand, the origin of the donor species with is uncertain.

The open circles in Fig. 5 represent the experimental and the solid line represents
the simulation with the values by FCCS, for n-type 4H-SiC (a) and 6H-SiC (b) epi-
layers. The solid lines are in good agreement with the experimental , indicating that
the values determined by FCCS are reliable.

According to literature [15, 16], and correspond to the energy levels of
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Figure 6. Dependence of each donor level on total donor density in n-type 3C-SiC.

isolated, substitutional N donors at hexagonal and cubic lattice sites in 4H-SiC or 6H-SiC,
respectively. Because the ratio of the number of hexagonal lattice sites to the number of
cubic lattice sites in 4H-SiC is unit, the probability for N atoms being put into each lattice
site is found to be an half, which consists that the experimental result of . On
the other hand, the ratio of the number of hexagonal lattice sites to the number of cubic
lattice sites in 6H-SiC is , which consists that the experimental result of .

The acceptor densities and energy levels in undoped GaSb and InGaSb epilayers as well
as the donor density and energy level in Te-doped Al Ga Sb were determined [17, 18,
19].

3.3.2. Dopant-Density Dependence

Figure 6 shows the dependence of each donor level on a total donor density (
) [20]. The symbols of , and represent , and

, respectively. Figure 7(a) and (b) depict the dependence of each donor level in N-
doped 4H-SiC epilayers on a total donor density ( ) [21] and the
dependence of each acceptor level in Al-doped 4H-SiC epilayers on a total acceptor density
( ) [22], respectively. The symbols of and in Fig. 7(a) represent

and , respectively, and the symbols of and in Fig. 7(b) represent
and , respectively.

An ideal donor level is the energy required to emit one electron from the donor
site into infinity on . However, since an n-type semiconductor is electrically neutral,
each positively charged donor is shielded by one electron on . This shielding electron is
assumed to be located within half ( ) of an average distance ( ) of the donors,
indicating that the donor level should be lowered by the energy higher than
due to Coulomb’s attraction. Therefore,

(43)
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Figure 7. Dependence of each dopant level on total dopant density in 4H-SiC; (a) donors
and (b) acceptors.

and
(44)

where is the free space permittivity, and is the dielectric constant for SiC. On the other
hand,

(45)

In N-doped n-type 3C-SiC and 4H-SiC, the fitting parameters obtained by a least-
squares fit of Eq. (43) to the data in Fig. 6 and Fig. 7(a) are listed in Table 1, respectively,
and the simulations are denoted by the solid lines in Fig. 6 and Fig. 7(a).
Since these are satisfied with Eq. (44), they are considered to be reasonable. In Al-
doped p-type 4H-SiC, the fitting parameters obtained by a least-squares fit of Eq. (45) to
the data in Fig. 7(b) are listed in Table 1, and the simulations are denoted
by the lines in Fig. 7(b). Although these are a little lower than ,
they are considered to be reasonable.

Figure 8(a) and (b) show the temperature dependence of the electron mobility and the
hole mobility, respectively. As is clear from Fig. 8(a), the electron mobility at K can
be expressed as

(46)

where . Therefore, and can be evaluated
individually as follows.

(47)
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Table 1. Parameters for donor levels and acceptor in SiC.
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Figure 8. Temperature dependencies of electron mobility for n-type 4H-SiC epilayers (a)
and hole mobility for p-type 4H-SiC epilayers (b).

and

(48)

where , , , , , , , and are the fitting parameters.
In Fig. 8(b), moreover, the hole mobility at K can be expressed as

(49)



Determination Methods of Densities and Energy Levels of Impurities ... 317

where . Therefore, and can be evaluated
individually as follows.

(50)

and

(51)

where , , , , , , , and are the fitting parameters.

Table 2. Parameters for .

(cm ) (cm )

Table 3. Parameters for .

[cm /(V s)] [cm /(V s)] (cm )

[cm /(V s)] [cm /(V s)] (cm )

From Fig. 8(a), all the parameters in Eqs. (47) and (48) were determined, and are listed
in Tables 2 and 3. From Fig. 8(b), on the other hand, all the parameters in Eqs. (50) and
(51) were determined, and are listed in Tables 2 and 3. Therefore, the electron and hole
mobilities for any at K can be simulated.

Figure 9(a) shows for three different Al concentrations [22, 23]. One acceptor
level was approximately eV, which is assigned to an Al acceptor. Therefore, the
density and energy level of this acceptor are represented by and , respectively. The
other acceptor level, on the other hand, was approximately eV, which has not
been assigned. The density and energy level of the deep acceptor are represented by
and , respectively. Figure 9(b) shows the relationship between and . From
the figure, the following empirical relationship between and was obtained;

(52)

Therefore, it is considered that the deep acceptor is most likely related to Al.
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Figure 9. Temperature dependence of hole concentration for three different Al-doping levels
(a) and relationship between Al acceptor density and deep acceptor density (b).

3.4. Electron-irradiated 4H-SiC
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Figure 10. Al-doped p-type 4H-SiC epilayer irradiated by keV electron irradiation; (a)
temperature dependencies of hole concentration before and after irradiation and (b) fluence
dependencies of Al acceptor and deep acceptor.

Figure 10(a) shows the experimental in a m-thick Al-doped p-type 4H-SiC
epilayer on n-type 4H-SiC (thickness: m, with a resistivity of cm) for fluences
( ) of ( ), ( ), ( ), ( ), ( ), and cm ( ),
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respectively [24]. The at low temperatures decreased significantly with increasing ,
whereas the at high temperatures was changed slightly by the irradiation.

In Fig. 10(a), represents for the unirradiated case, and the solid line is the
simulation with of cm , of eV, of cm ,

of eV, and of cm , which were determined by FCCS. Since
the simulation is in good agreement with the experimental for the unirradiated
case, the values obtained by FCCS are reliable.

Figure 10(b) shows the fluence dependencies of and , denoted by and ,
respectively. decreased with increasing , and finally there are no more Al acceptors.
On the other hand, initially increased with , and then decreased.

keV electron irradiation can replace substitutional C atoms (C ) [23]. In order to
reduce by the keV electron irradiation, the surroundings of the Al acceptor need to
be changed. This indicates that the rate of decrease of by the irradiation is proportional
to . Consequently, the differential equation that leads to fluence dependence of Al
acceptors is given by

(53)

where is the removal cross section of Al acceptors for keV electron irradiation.
Therefore,

(54)

Figure 10(b) shows in a semi-logarithmic scale, and the solid line is a straight
line obtained by least-squares fitting. Since the straight line is in good agreement with
in the semi-logarithmic plots, Eq. (54) is feasible for the fluence dependence of . is
then determined from the slope as cm .

In Fig. 10(b), at fluences of cm , increased with increasing , while
decreased. Furthermore, the increment of is close to the decrement of . This

experimental result may indicate that the keV electron irradiation transforms the Al
acceptor into the deep acceptor. In this case, the differential equation describing the fluence
dependence of the deep acceptor density can be expressed as

(55)

where is the removal cross section of the deep acceptors for keV electron ir-
radiation. The broken line in Fig. 10(b) represents the simulated with of

cm using Eq. (55), which shows qualitative agreement with the experimental
data, but not quantitative agreement.

Figure 11(a) shows the experimental before irradiation ( ) and after irradiation
with keV electrons at of cm ( ) and cm ( ). From each ,
two types of donor species were detected and evaluated using FCCS. The energy level of
N donors at hexagonal C-sublattice sites ( ) was meV. The energy level of N
donors at cubic C-sublattice sites ( ) was meV. Figure 11(b) shows the fluence
dependencies of ( ) and ( ). The decreased substantiallywith increasing
of keV electrons, whereas decreased only slightly, indicating that N donors at

hexagonal C-sublattice sites are less radiation-resistant than N donors at cubic C-sublattice
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Figure 11. N-doped n-type 4H-SiC epilayer irradiated by keV electron irradiation;
(a) temperature dependencies of electron concentration before and after irradiation and (b)
fluence dependencies of N donors located at hexagonal and cubic C-sublattice sites.

sites. This finding suggests that 3C-SiC might be the most and 6H-SiC should be the least
radiation-resistant of N-doped 3C-SiC, 4H-SiC, and 6H-SiC.

By analogy with Eq. (54), the fluence dependencies of and are expected to
be derived from the following differential equations:

(56)

and
(57)

where and are the removal cross sections for keV electron irradiation of
the N donors at hexagonal and cubic C-sublattice sites, respectively. By fitting the curve to
the experimental data, the values of and were determined to be
and cm , respectively. The solid and broken curves in Fig. 11(b) represent the
simulated fluence dependencies of and , respectively.

3.5. Trap Densities Higher Than Dopant Density

Figure 12(a) shows the for the cm B-doped FZ-Si irradiated with several fluences
of MeV protons [25]. The , , , and symbols correspond to the fluences of

, , , and cm , respectively. Figure 12(b) shows the
dependencies of B acceptor density and hole-trap densities on proton fluence. The values of

, , and were meV, meV, and meV, respectively.
The values of the lowest in the temperature range of the measurement were ,

, , and meV for the samples irradiated with fluences of , , ,
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Figure 12. Proton-irradiated Si; (a) temperature dependencies of electron concentration in
Si before and after proton irradiation and (b) fluence dependencies of densities of B acceptor
and hole traps.

and cm , respectively. Since of B in Si is meV, B acceptors were
completely ionized at the lowest measurement temperature, indicating that could not
be determined in this measurement temperature range. Because in the case of
cm fluence the hole traps with were not filled with holes at all in the measurement
temperature range, the values of and could not be evaluated. For the same
reason, the values of , , , and could not be estimated in the
sample irradiated with the cm fluence.

The values of and increase clearly. Moreover, of the sample irra-
diated with cm exceeds of the unirradiated sample. Because the density
and energy level of the hole trap with a density higher than the acceptor density can be
determined from FCCS, FCCS is superior to DLTS from the viewpoint of the evaluation of
traps with high densities.

4. Nondegenerate Heavily-DopedWide Bandgap
Semiconductors

4.1. Problems of Heavily-Doped Case

The excited states of a substitutional dopant in a semiconductor have been theoretically
discussed using the hydrogenic model (or the effective mass approximation) [26, 27, 28],
and the existence of excited states of the dopant (e.g., B or P) in Si or Ge was experimentally
confirmed from infrared absorption measurements at very low temperatures [26]. However,
the influence of the excited states on the majority-carrier concentration in Si or Ge was not
experimentally confirmed [27, 29], partially because the excited state levels of the dopants
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in Si or Ge were too shallow and partially because was deeper than the dopant
energy level in the temperature range of the measurement. Therefore, by a least squares
fit of the charge neutrality equation to the temperature dependence of the majority-carrier
concentration experimentally obtained by Hall-effect measurements, the values of dopant
density, dopant energy level, and compensating density can be determined using the Fermi-
Dirac (FD) distribution function, which does not include the influence of the excited states
of the dopant. The FD distribution functions for donors and acceptors are expressed as [5]

(58)

and
(59)

respectively, where and are the degeneracy factors for donors and acceptors,
respectively.

Because in p-type wide bandgap semiconductors the experimentally obtained values
of have been reported to be deep, is often between and . Furthermore,
because the excited state levels of acceptors are as deep as a B acceptor level (i.e., ground-
state level) in Si, is close to the excited state levels. The excited states of the acceptor
must, therefore, affect .

Using a distribution function including the influence of the excited states of an acceptor
derived from the viewpoint of the grand canonical ensemble [27, 30, 31], was deter-
mined by fitting the simulation to the experimental . The determined this
way was, however, much higher than the concentration of acceptor atoms determined by
secondary ion mass spectroscopy (SIMS). This same situation occurred in the case of the
FD distribution function [32, 33].

4.2. Experimental Results

Figure 13 shows and for the B-doped diamond. Because of B in diamond
is approximately eV, values were lower than over the measurement
temperature range.

and of B, and can be determined using

(60)

where is much less than over the measurement temperature range, and
is the distribution function for acceptors. By replacing with , the values
of , , and were determined by FCCS and are listed in Table 4. In the table, ,

, and represent the FD distribution function and the distribution functions includ-
ing the influence of the excited states of a dopant, which are derived from the viewpoint of
the microcanonical (MC) and grand canonical (GC) ensembles, respectively, and is the
dopant concentration.
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Figure 13. Temperature dependencies of hole concentration and Fermi level for B-doped
diamond.

The of cm for is approximately five times higher than the B
concentration ( ) of approximately cm determined by SIMS. Since is the
density of B atoms at the lattice sites, should be less than or equal to . Therefore,

seems inappropriate to a distribution function for B acceptors in heavily-doped
diamond.

Figure 14(a) shows and for the heavily Al-doped 6H-SiC wafer, while
Fig. 14(b) shows and for the lightly Al-doped 6H-SiC epilayer. values
for the heavily-doped 6H-SiC were below over the measurement temperature range,
whereas values for the lightly-doped 6H-SiC were above over almost all the
measurement temperature range.

The values of , , and for were estimated and are listed in Table 4.
The obtained for the heavily-doped 6H-SiC is cm that is approximately six
times higher than the Al concentration ( ). On the other hand, the obtained for the
lightly-doped 6H-SiC is cm , which is nearly equal to the . This suggests
that can be used only in the lightly doped sample.

As is clear from Table 4, in the Al implanted 4H-SiC layer the of cm
is approximately five times higher than the , and in the Mg doped GaN epilayer the
of cm is approximately four times higher than the Mg concentration ( ).

4.3. Distribution Function for a Deep Substitutional Dopant

4.3.1. The Number of Configurations of the System

We now consider the microcanonical ensemble. Electrons and holes in semiconductors are
fermions, which obey the Pauli exclusion principle. Because of this, in the allowed bands,
the multiplicity function for electrons arranged in states at a given
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Table 4. Results for each distribution function.
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Figure 14. Temperature dependencies of hole concentration and Fermi level; (a) for heavily
Al doped 6H-SiC and (b) for lightly Al doped 6H-SiC.

energy ( ) is expressed as [30]

(61)
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where is the number of degenerate states per unit volume at and is the
number of electrons per unit volume at .

In a forbidden band, on the other hand, the multiplicity function for electrons ar-
ranged in donors is quite different from Eq. (61), where is the number of electrons
bound to donors per unit volume. When spin degeneracy as well as the excited states of the
donor is neglected, the multiplicity function ( ) for the electrons arranged in the
donors is given by

(62)

Each state, ground or excited, consists of a spin-up state and a spin-down state. When
the energy difference between the two states in a magnetic field is denoted by , the
multiplicity function ( ) is given by

(63)

When the magnetic field is zero or very weak ( ),

(64)

In a neutral donor, furthermore, only an electron is located at one state for the ground
and excited states of the donor. The multiplicity function ( ) is given by

(65)

where is the th excited state level ( ) of the donor, is the ground-state
degeneracy factor of , is the th excited state degeneracy factor of , and the
value of ( ) is the highest order of the excited states considered here.

Consequently, the multiplicity function ( ) for the electrons arranged in the
donors is expressed as

(66)

Finally, the total number of configurations of the system ( ) is obtained from the prod-
uct of these multiplicities as

(67)

4.3.2. Thermal Equilibrium Configuration

Thermal equilibrium configuration occurs when the entropy

(68)

reaches a maximum value under the following two conservation laws; (1) the total number
( ) of electrons in the system is conserved, that is,

(69)
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and (2) the total energy ( ) of electrons in the system is conserved, i.e.,

(70)

where is the average donor level given by

(71)

and is the ensemble average of the ground and excited state levels of the donor,
measured from , and is given by

(72)

Under these conditions, the distribution functions for electrons including the influence of
the excited states of the donor can be derived [34].

(73)

where is here called the effective degeneracy factor for donors given by

(74)

4.3.3. The Hydrogenic Donor Case

A neutral donor can be approximately described as a hydrogen atom, that is, a positively
ionized donor with an electron in orbit about the ionized donor. In this case, is given
by [27, 28]

(75)

and
(76)

where is the free-space electron mass.
Because the Bohr radius ( ) of the ground state is very small, is expressed as

(77)

where is the central cell correction induced due to a strongly localized potential [26].
Therefore, the ground-state level does not obey the hydrogenic model. However, because
the wave function extension of the ( )th excited state is of the order , the excited
state levels are expected to follow the hydrogenic model.
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4.3.4. Distribution Function for Acceptors

In the case of acceptors, different from those in the conduction band, there are two degen-
erate valence bands (i.e., a light-hole band and a heavy-hole band), indicating that there
is an acceptor state for the light-hole band as well as an acceptor state for the heavy-hole
band. When the density of electrons occupied at acceptors ( ) is considered, therefore,

is derived as [34, 35]

(78)

where is here called the effective degeneracy factor for acceptors given by

(79)

Here, is the ensemble average of the ground and excited state levels of the accep-
tor, measured from , and is given by

(80)

is the ( )th excited state level of the acceptor, expressed as

(81)

and
(82)

The average acceptor level and the acceptor level are expressed as

(83)

and
(84)

4.3.5. Distribution Function Derived from Grand Canonical Ensemble

The grand canonical ensemble is an ensemble of the same subsystems, and particles can
transfer from one subsystem into another subsystem, indicating that the number of parti-
cles in the subsystem ( ) can change. The partition function ( ) for the grand canonical
ensemble is given by [36]

(85)
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where
(86)

is the partition function for the canonical ensemble for a given , which is expressed
as

(87)

This summation is carried out over all the sets of under the condition

(88)

where and are the energy level and number of electrons at a th state in the subsystem,
respectively.

A donor is a subsystem. Each donor has one electron or no electron (i.e., or
). The electron is located at one state for the ground and excited states (i.e., or ).
Moreover, the number of the spin’s states and degenerate excited states should be taken into
account. Therefore,

(89)

and

(90)

Finally,

(91)

The mean number of electrons in the subsystem in thermal equilibrium is given by

(92)

Therefore, the distribution function including the influence of the excited states for a donor
is derived as

(93)

where

(94)
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which coincides with the reported distribution functions [27, 29, 31]. On the other hand,
the distribution function for acceptors is derived as

(95)

where

(96)

4.3.6. Comparison between Three Distribution Functions

If the influence of the excited states for a donor or an acceptor could be ignored (i.e., ),
or would coincide with or .

The reason why is different from is discussed later. Because an
electron can be at a higher excited state level at elevated temperatures, the energy of an
electron bound to a donor increases with increasing . Therefore, the average donor level
should increase with , which is consistent with Eqs. (71) and (72).

If, on the other hand, electrons were located at the ground-state level at all temperatures,
Eq. (70) could be replaced by

(97)

In this case, the distribution function for donors derived from the microcanonical ensem-
ble viewpoint would coincide with . This suggests that is correct only
under the assumption that all the electrons bound to donors have at all temperatures.
In the same way as illustrated for , if could be assumed to be (i.e.,

), would coincide with .

4.4. Determination of Reliable Density and Energy Level of Deep Dopant

By FCCS using , in B-doped diamond, , , and were determined to be
cm , eV, and cm , respectively. The highest excited

state considered here was the sixth excited state (i.e., ), under which the best curve
fitting was achieved. Because the radius of the sixth excited state is approximately nm
and the lattice constant for diamond is 0.356 nm, the number of C atoms in a sphere of
radius nm is approximately . Because the C density is cm and the

is approximately cm , there is on the other hand, one B atom in approximately
C atoms. These suggest that the condition (i.e., ) is not so bad.

, , and determined by FCCS using are also shown in Table 4. In
Table 4, all the values determined using three distribution functions seems reasonable.
However, for is highest, while for is lowest. The obtained
using is closest to . Therefore, is suitable for determining from

.
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Table 4 shows , , and for the others determined by FCCS using
or As is clear from Table 4, only led to reliable , , and for
heavily-doped cases.

In Te-doped Al Ga Sb where was shallower than the donor energy level,
moreover, is suitable for determining the density and energy level of the Te donor
from the temperature dependence of the electron concentration [19].

Judging from the previous discussions, the distribution function derived from the mi-
crocanonical ensemble viewpoint is most appropriate. The reason why a reasonable dopant
density can be obtained using Eq. (73) or (78) is discussed from the viewpoint of the ef-
fective degeneracy factors. Figure 15 shows , , and for 6H-SiC,
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Figure 15. Temperature dependencies of simulated degeneracy factors for acceptors for
6H-SiC.

denoted by broken, solid, and dotted lines, respectively. decreases from with
increasing , whereas increases. As the effective degeneracy factor for acceptors
decreases, the distribution function for acceptors approaches at the same , indicating that
in the case of , the ionization efficiency of acceptors is highest at elevated temper-
atures.

Figure 16(a) depicts the ionized acceptor densities simulated using of
cm , of eV, of cm , and the effective de-

generacy factors for acceptors shown in Fig. 15, for , , and ,
denoted by broken, solid, and dotted lines, respectively. As is clear from the figure,
for is highest at elevated temperatures. In the case of , therefore,
required to satisfy the experimentally obtained is much less than that determined using

or .
Another interpretation of Fig. 16(a) is as follows. As the temperature increases, the

possibility increases that a hole bound to the acceptor is located at a higher excited state
level. That is why the acceptor can more easily emit a hole to the valence band at elevated
temperatures. This coincides with Eq. (83). Therefore, it is clear that the excited states of
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Figure 16. Temperature dependencies of simulated ionized acceptor densities; (a) for heav-
ily Al doped 6H-SiC and (b) for lightly Al doped 6H-SiC.

the acceptor enhance the ionization of the acceptor at elevated temperatures.
Figure 16(b) shows simulations for the lightly Al-doped 6H-SiC using the ef-

fective degeneracy factors for acceptors shown Fig. 15. Here, , , and used in the
simulation were cm , eV, and cm , respectively. In the
figure, the broken, solid, and dotted lines represent the simulations for ,

, and , respectively. Although the effective degeneracy factors for ac-
ceptors in the lightly-doped case are the same as those in the heavily-doped case,
for , , and are similar to each other in the lightly-doped case.
This is because the effective degeneracy factor for acceptors has little effect on ,

, and , when is far from the acceptor level. To determine
from , therefore, is the most appropriate among them.

5. Transient Capacitance Method for High-Resistivity
Semiconductors

5.1. Dependence of Diode Capacitance on Measurement Frequency

Let us consider the capacitance of a Schottky barrier diode measured at different frequen-
cies. Figure 17(a) and (b) show the energy band diagram and the equivalent circuit of the
Schottky barrier diode, respectively. At low frequency ( ) that is a normal
measurement frequency, the equivalent circuit is described as Fig. 17(c), insisting that the
capacitance measured is due to the depletion width of the diode.

At high frequency ( ), on the other hand, the capacitance measured is the
geometric capacitance calculated using the semiconductor thickness, because the equivalent
circuit can be expressed as Fig. 17(d).
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Figure 17. Capacitance measurements for Schottky barrier diode; (a) energy band diagram,
(b) equivalent circuit of the diode, (c) equivalent circuit at low measurement frequency,
and (d) equivalent circuit at high measurement frequency. Here, is the permittivity for
semiconductor ( ).

5.2. Capacitance-Voltage Characteristics

Capacitance–voltage ( – ) and transient capacitance measurements were carried out
in a Schottky barrier diode fabricated using -mm-thick high-resistivity p-type 6H-SiC at
a frequency of MHz in the temperature range between and K, where the electrode
area was mm [37].

The capacitance of the diode at K was independent of reverse bias as shown by
in Fig. 18(a), and was close to the geometric capacitance calculated using the thickness of
the 6H-SiC substrate. The in Fig. 18(a) represents the – characteristics at K.
At K, the capacitance was dependent on reverse bias, indicating that the measured
capacitance is determined by the width of the depletion region. Therefore, the capacitance
was measured at K. Figure 18(b) shows the – characteristics of the diode at

K. From the slope, the value of was estimated as cm , where
includes the acceptor density and hole-trap densities.

5.3. Transient Capacitance

The was measured after an applied voltage was step-functionally changed from to a
reverse bias ( ) of V. Figure 19 shows the and ICTS signal of the diode at

K, indicated by broken and solid lines, respectively, where

(98)

From the number of peaks of in Fig. 19, at least three types of hole-trap species could
be detected. These hole traps are here referred to as HRH2, HRH3, and HRH4, as shown in
Fig. 19. Judging from the ICTS signals in the shorter or longer time range, there are at least
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Figure 19. Transient capacitance and ICTS signal at K.

another two unresolved hole traps. Figure 20(a) and (b) show the ICTS signal at and
K, respectively, in which these two contributions could be fully resolved and labeled

HRH1 and HRH5, respectively. Finally, five types of hole traps could be observed in the
temperature range between and K.

The ICTS signal is theoretically expressed as [8]

(99)
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Figure 20. ICTS signal at K (a) and at K (b).

which has a peak at

(100)

where is the diffusion potential of the diode, and is the emission rate of an th hole
trap, respectively. Moreover, is given as [8]

(101)

On the other hand, the hole concentration at the th trap ( ) varies as

(102)

where
(103)

is the electron occupation probability for the th hole trap, given as

(104)

is the hole concentration, is the thermal velocity of electron, and and are the
cross section and degeneracy factor of the th hole trap, respectively. In thermal equilibrium
( ), is derived using Eqs. (102)-(104) as

(105)
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Table 5. Densities, energy levels and cross sections of hole traps in high-resistivity
6H-SiC determined by ICTS.

Hole-trap species Density (cm ) Energy level (eV) Cross section (cm )
HRH1
HRH2
HRH3
HRH4
HRH5

and
(106)

Since is proportional to and is proportional to , is expressed as

(107)

and

(108)

The relationship between and is shown in Fig. 21. In Fig. 21, the optimum
straight line fitting to experimental data for each trap could be obtained, from which the
values of and could be determined and listed in Table 5. Here, and
were assumed to be and , respectively. This table also includes estimated using
Eq. (101), which is averaged over the temperature range of the measurement. The sum
of the densities of intrinsic defects detected is cm , whereas the sum of the
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acceptor density and hole-trap densities is approximately cm . Therefore, the
intrinsic defects strongly decrease the majority-carrier concentration in the high-purity 6H-
SiC, which makes as high as approximately cm.

6. Heterojunction-Monitored Capacitance Method
for Amorphous Semiconductors

6.1. Steady-State HMC

The optoelectronic properties of high-resistivity amorphous semiconductors such as un-
doped hydrogenated amorphous silicon (a-Si:H) are critically linked with the density-of-
state (DOS) distribution, , in the mobility gap. Measurement of and an under-
standing of the nature of the gap states are, therefore, very important. However, DLTS
and ICTS are not feasible to determine the using a Schottky barrier diode fabricated
from high-resistivity amorphous semiconductor, because it is impossible to measure the
depletion width of the junction.

In order to measure the depletion width in high-resistivity amorphous semiconductors,
an amorphous semiconductor/crystalline semiconductor heterojunction is discussed. The
method to determine in amorphous semiconductors using heterojunctions is referred
to as heterojunction-monitored capacitance (HMC) methods [38, 39, 40, 41, 42]. Since
the conduction type of undoped a-Si:H is n-type, for example, p-type crystalline Si (c-
Si) is selected. Figure 22(a), (b), (c), and (d) show the energy-band diagram, potential,
charges in statics, and charges corresponding to AC voltage in the p-type c-Si/undoped a-
Si:H/Mg heterojunction, respectively, where Mg forms an ohmic contact with the undoped
a-Si:H [38, 43]. In the figure, the gap states as indicated by the black area of (a) are posi-
tively charged states, and represents negatively charged acceptors in the depletion region
of p-type c-Si.

The depletion region formed by the heterojunction is considered. When a bias voltage
( ) is applied, it produces space-charge layers both in a-Si:H and c-Si. Since this p-type c-
Si has only shallow acceptors, the space charge in the c-Si is formed by negatively charged
acceptors. However, localized states in a-Si:H distribute within the gap.

Let us discuss the origin of the positive space charge in a-Si:H using Fig. 22. In the
neutral region, all the gap states below are occupied by electrons, whereas in the deple-
tion region, the gap states above are devoid of electrons, where is determined
from the condition that the thermal emission rate for electrons is equal to that for holes and
given by [39]

(109)

where and are the attempt-to-escape frequencies for holes and electrons, respectively.
Therefore, the gap states in the area painted in black in Fig. 22(a) behave like positive space
charges (herein referred to as donor-like states). The density of the donor-like states is
constant in the spatial position between and the depletion width in a-Si:H ( ). This,
together with the density of donors (if they exist), gives the effective density of the donor-
like states ( ), as shown in Fig. 22(c). Figure 22(b) shows the potential variation with
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band diagram, (b) potential, (c) charges in statistic, and (d) charges corresponding to AC
voltage.

distance. The depletion widths ( and ) are given by

(110)

with

(111)

and

(112)

Here, is the bandgap and is the thickness of a-Si:H. The subscripts and refer to
c-Si and a-Si:H, respectively.

The capacitance is measured with a small AC voltage at MHz. The resistivity ( )
of c-Si is about cm so that the dielectric relaxation time ( ) becomes s,
indicating that the capacitance in c-Si is given by

(113)

On the other hand, the resistivity ( ) of undoped a-Si:H is about cm. Then, the
dielectric time ( ) becomes s, suggesting that at MHz AC voltage the capaci-
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Figure 23. characteristics of undoped a-Si:H/p-type c-Si heterojunction at MHz.

tance in a-Si:H can simply be given by

(114)

The measured capacitance at MHz is expressed as

(115)

because the redistribution of charge ( ) can spatially respond to the MHz AC voltage at
and , shown in Fig. 22(d). From Eqs. (110)-(112), the following equation is obtained:

(116)

Finally, the next equation is derived from Eqs. (111), (113), (115), and (116):

(117)

From the – characteristics, therefore, can be estimated.
Figure 23 shows the high-frequency characteristics of an undoped a-Si:H/p-type

c-Si heterojunction. The value of , , and are cm , approximately
m, and mm , respectively. Because is close to at forward biases, the saturated

value of pF is determined by the thickness of a-Si:H.
Figure 24(a) shows the characteristics, and the straight relationship could not

be obtained. Figure 24(b) shows the characteristics, where pF. Since the
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data reveal a good linear relationship, and were determined to be cm
and V, respectively. The value of at V is calculated to be approximately

m using Eq. (112), indicating that . It is noted that at the maximum reverse
bias should be shorter than .

6.2. Heterojunction-Monitored Capacitance Spectroscopy

In order to determine , the transient HMC is considered after is applied to the diode
over the zero-bias condition, as shown in Fig. 25. In energy-band diagrams, the gap states
as indicated by the hatched area are neutral, and in the depletion region the empty gap states
between and behave like positively charged states. This method is referred to as
heterojunction-monitored capacitance spectroscopy (HMCS) [39, 41, 42].

Figure 25(a) shows the energy-band diagram and space-charge density at . At
, is applied across the whole of the amorphous and crystalline components. After

the reverse bias has been on for , the space charge in the vicinity of the heterojunction
will redistribute itself in response to the applied potential, as shown in Fig. 25(b). The
transient HMC after can be analyzed from Eq. (117), and at can be
expressed as

(118)

with
(119)

and
(120)
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doped a-Si:H/p-type c-Si heterojunction at three different times; (a) , (b) ,
and (c) .

where is the depletion width at and is the voltage across the depletion region
of c-Si at . To make this analysis feasible, the absolute value of has to be necessarily
much higher than , so that the relationship of is valid and the
average value of over the depletion region at is close to . This condition also
suggests that interface states do not affect the measurement of HMC.

The function is defined as

(121)

On the other hand, is theoretically derived as

(122)

with
(123)

(124)

(125)
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and
(126)

Under the conditions that and (i.e., for the gap states
between and ), Eq. (122) can be approximately expressed as

(127)

Assuming that the function of behaves as a delta function,
, since the integrated value of from to using Eq. (125)

is , we can easily derive the following relationship from Eq. (127):

(128)

and
(129)

Using calculated from Eq. (128) as an initial , we can determine from
which of Eq. (122) can be obtained to fit the measured .
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Figure 26. Transient capacitance of undoped a-Si:H/p-type c-Si heterojunction.

Figure 26 shows the change in the capacitance of the heterojunction after of V
is applied to the diode under the zero-bias condition.

The solid line in Fig. 27 represents for a-Si:H calculated using in Fig 26,
when s . Here, the value of can be estimated from the temperature depen-
dence of [39, 42]. In Fig. 27, the broken and dashed-dotted lines represent for
a-Si Ge :H and a-Si C :H, respectively, where is the optical bandgap of amor-
phous semiconductors.
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Figure 27. Density of states for a-Si:H, a-Si Ge :H, and a-Si C :H.

7. Discharge Current Transient Spectroscopy

7.1. Basic Concept

Even when the resistivities of materials are too high to measure the change of the depletion
width in diodes by capacitance, it is able to measure the transient current in the diodes.
Therefore, the transient current due to re-emission (or discharge) of charges from traps is
considered.

In graphical peak analysis methods, it is desired that functions to be evaluated have a
peak value ( ) at a peak discharge time ( ), where is the density
per unit area of an th trap, respectively. One of the functions that satisfy the condition
mentioned earlier is expressed as

(130)

where is the discharge time. Here, when traps are confirmed to be uniformly distributed
in the direction of the film thickness, the density per unit volume can be calculated as
over the film thickness.

When we can introduce a function in which each peak appears at

(131)

we can shift the peak discharge time to the measurement time range by changing the pa-
rameter ( ). This indicates that we can determine and in a wide emission-rate



Determination Methods of Densities and Energy Levels of Impurities ... 343

range, even when the measurement time range is limited. The function that satisfies this
condition is

(132)

In this case, each peak value is

(133)

at expressed as Eq. (131). Therefore, using and , the values of
and can be determined as

(134)

and
(135)

respectively.
In order to obtain Eq. (132), we define the function to be evaluated as

(136)

where is the steady-state leakage current at the discharge voltage ( ).
In the case of thermionic emission processes, can be determined from the tem-

perature dependence of , since is given by

(137)

When the time dependence of the depolarization of an th dipole in a dielectric film is
given by

(138)

the polarization ( ) and relaxation time ( ) of the -th dipole can be determined using
DCTS. In this case, and in Eq. (132) should be replaced by and ,
respectively.

7.2. Theoretical Consideration

A capacitor or a diode is considered. When a charge voltage ( ) is applied to the capac-
itor in the interval of , a charge current ( ), which fills traps with charged
carriers (electrons or holes), flows through the capacitor. In the case of diodes, is usu-
ally V. By , all the traps are assumed to capture charged carriers, indicating that
at the density per unit area, , of charged carriers captured at the th trap is
expressed as

(139)
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At , the applied voltage is changed from to . Since the resistance in the ex-
ternal measurement circuit is very low, the charge due to the geometric capacity disappears
in a very short time. At , therefore, the measured arises due to the emission of
charged carriers from traps as well as due to .

Since follows the rate equation

(140)

the total charge, , in the film is expressed as

(141)

Because the decrease of results in the transient discharge current,

(142)

From Eq. (136), is theoretically expressed as

(143)

As is clear from Eq. (143), we have obtained a suitable function for the graphical peak
analysis method. This analysis is referred to as discharge current transient spectroscopy
(DCTS) [44, 45, 46, 47, 48], and can be carried out using software developed in-house
(http://www.osakac.ac.jp/labs/matsuura/).

7.3. Shift of Peak Discharge Time to Measurement Time Range

It is demonstrated that in Eq. (136) is a useful parameter when the time range of
the measurement is limited. Figure 28(a) shows the transient discharge current, which is
simulated assuming the following two kinds of traps. and for Trap1 are

and , respectively, and for Trap2 are and
, respectively, and is .

Figure 28(b) shows the DCTS signals. The solid line represents the DCTS signal with
. In this case, only one peak is detected, and the peak discharge time and peak

value are s and , respectively. From Eqs. (134) and (135), and
are determined to be and , respectively. Since the

other peak is not detected when , however, it is impossible to determine
and .

The broken line in Fig. 28(b) represents the DCTS signal with . In
this case, two peaks appear in the figure, and the two peak discharge times are s and

s. Using Eqs. (134) and (135), therefore, and of the trap corresponding to
s are determined to be and , respectively, while
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Figure 28. Simulated transient discharge current (a) and DCTS signals (b).

and of the trap corresponding to s are determined to be
and , respectively. The obtained values are in good agreement with the
values using which the transient discharge current was simulated. This indicates that
and can be determined in a wide emission-rate range by changing , even when the
measurement time range is limited.

7.4. Distinction among Traps with Close Emission Rates

It is demonstrated that in Eq. (136) is also useful when there are traps with close emis-
sion rates in the film. Figure 29 shows the transient discharge current, which is simulated
assuming the following two kinds of traps. and for Trap1 are
and , respectively, and for Trap2 are and ,
respectively, and is . In this case, is very close to .

The solid line in Fig. 30(a) represents the DCTS signal with . In this
case, only one peak is detected, and the peak discharge time and peak value are s and

, respectively. From Eqs. (134) and (135), and are determined
to be and , respectively. These obtained values are
only a little different from and using which the transient discharge current was
simulated. In the figure, the broken and dashed-dotted lines, which correspond to Trap1
and Trap2 respectively, are simulated using the following equation;

(144)

Since it is found that Trap1 mainly affects the DCTS signal with , it is reason-
able that the values determined using the maximum of the DCTS signal are close to
and , respectively.

The solid line in Fig. 30(b) represents the DCTS signal with .
In this case, two peaks appear. One peak value is at s, and the
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Figure 30. DCTS signals with (a) (solid line) and (b)
(solid line). The broken and dashed-dotted lines are simulated using Eq. (144) for Trap1
and Trap2, respectively.

other peak value is at s. From Eqs. (134) and (135), and
are determined to be and , respectively, while

and are determined to be and , respectively.
In the figure, the broken and dashed-dotted lines, which are simulated using Eq. (144),
correspond to Trap1 and Trap2, respectively. The peak corresponding to Trap2 is maximum
when , although the peak corresponding to Trap1 is maximum when

. Therefore, it is natural that the values determined using the maximum of the
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Figure 31. dependence of (a) peak value for Trap1 (broken line) or Trap2 (dashed-
dotted line) and (b) or determined from the maximum of the DCTS signal.

DCTS signal with are close to and , respectively.
Figure 31(a) shows the dependence of the peak value for Trap1 (broken line)

or Trap2 (dashed-dotted line). The peak corresponding to Trap1 is maximum when
, while the peak corresponding to Trap2 is maximum when

. This suggests that it is possible to distinguish between two traps using the
dependence of or determined using the maximum of the DCTS signal.
Figure 31(b) shows the dependence of or determined from the maximum

of the DCTS signal. The two discrete values of or clearly appear in the figure.
Moreover, the obtained values are close to the values using which the transient discharge
current was simulated. Therefore, it is found that DCTS can distinguish among traps with
close emission rates by changing .

7.5. DCTS for Semi-insulating Semiconductors

After native oxide layers on a -mm-thick high-purity semi-insulating on-axis 4H-SiC
wafer were removed using HF, Ni electrodes with a radius of mm were evaporated in
vacuum onto both sides of the samples [47, 48]. Figure 32(a) shows the transient reverse
current at K after a of V is applied to a diode held at thermal equi-
librium ( V) for min. In the figure, represents the experimental , and
the solid line is calculated by interpolating the experimental with a cubic smoothing
natural spline function.

Figure 32(b) shows calculated with an of s using Eq. (136). There
are two peaks labeled Peak1 and Peak2, and the corresponding traps are here referred to as
SI1 and SI2, respectively. From and , the values of and for
SI1 were determined to be cm and s , respectively, while from
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Figure 32. Characteristics of Schottky barrier diode with high-purity semi-insulating 4H-
SiC at K; (a) transient reverse current and (b) DCTS signal.

Table 6. Energy levels and cross sections of traps in high-purity semi-insulating
4H-SiC determined by DCTS.

Trap species Energy level (eV) Cross section (cm )
SI1
SI2
SI3
SI4
SI5

and , and for SI2 were determined to be cm and
s , respectively.

Finally, five types of traps could be observed in the temperature range between and
K. Figure 33 shows the relationship between and for five different traps.

The optimum straight line fitting to experimental data for each trap could be obtained, from
which and could be determined using Eqs. (105)-(108), and listed in Table 6.

7.6. DCTS for Crystalline Insulators

Pb(Zr,Ti)O (PZT) thin films were deposited on Pt/SiO /(100)Si substrates at C by
metalorganic chemical vapor deposition, using Pb(C H ) , Zr(O-t-C H ) and Ti(O-i-
C H ) as source precursors [46]. The thickness of the PZT films was nm. The area
of the Pt top electrode was . DCTS measurements of Pt/PZT/Pt capacitors were
performed at K in an oxidation atmosphere ( at atom). The transient



Determination Methods of Densities and Energy Levels of Impurities ... 349

1000/T   (K-1)

e T
i/

T2
(s

-1
K

-2
)

: SI1
: SI2
: SI3
: SI4
: SI5

Semi-Insulating
 4H-SiC

2.6 2.8 3 3.2 3.4 3.6 3.8
10-8

10-7

10-6

Figure 33. Relationship between .

Discharge Time   (s)

D
is

ch
ar

ge
C

ur
re

nt
(A

)

PZT
373 K

1 10 100 1000
10-13

10-12

10-11

10-10

10-9

Figure 34. Transient discharge current in Pt/PZT/Pt capacitor.

discharge current was measured at V, after of V was applied to the capacitor
in the interval of s. Figure 34 shows in the Pt/PZT/Pt capacitor. To search a peak
of the DCTS signal precisely, the DCTS signal was calculated by interpolating with
a cubic smoothing natural spline function.

The solid line in Fig. 35(a) represents the DCTS signal with . The maxi-
mum discharge time and maximum value were s and , respectively.
From Eqs. (134) and (135), and were determined to be and

, respectively. In the case that the traps are uniformly distributed in the
film, the trap density is estimated to be , because the film thickness was

nm. The broken line represents the signal simulated using Eq. (144) with the ob-
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Figure 35. DCTS signal (solid line) with (a) and (b) ,
which is calculated by interpolating with a cubic smoothing natural spline function.
The broken line corresponds to the signal simulated using Eq. (144) with and
determined from the maximum of the DCTS signal.

tained values. Since the solid line is much broader than the broken line, the DCTS signal is
considered to be affected by several traps with close emission rates.

The solid line in Fig. 35(b) represents the DCTS signal with . The
maximum discharge time and maximum value were s and , respec-
tively. From Eqs. (134) and (135), and were determined to be
and , respectively.

The broken line represents the signal simulated using Eq. (144) with the obtained val-
ues. Since and for are different from those for ,
at least two kinds of traps with close emission rates are included in the PZT film.

Figure 36(a) shows the dependence of (solid line) or (broken line) deter-
mined from the maximum of the DCTS signal at . Three discrete values of or

clearly appear in the figure. Moreover, the range of the constant clearly cor-
responds one-to-one to the range of the constant . Therefore, it is found that DCTS
can distinguish among three kinds of traps (Trap1, Trap2, and Trap3) with close emission
rates by changing negative . From Fig. 36(a), and of each trap can be deter-
mined; and are and , respectively, and
and are and , respectively, and and are

and , respectively.
Figure 36(b) shows the dependence of (solid line) or (broken line) deter-

mined from the maximum of the DCTS signal at . In addition to the three kinds
of traps determined in Fig. 36(a), another two kinds of traps (Trap4 and Trap5) are con-
sidered to be included in this thin film. and are approximately
and , respectively. On the other hand, the emission rate of Trap5 may be



Determination Methods of Densities and Energy Levels of Impurities ... 351

N
S T

i
(x

10
12

cm
-2

)

: NSTi
: eTi

eref (x10-4 s-1)

e T
i

(x
10

-2
s-1

)

Trap1

Trap2

Trap3
PZT
373 K

-5 -4 -3 -2 -1 0
1

1.1

1.2

1.3

1.4

1.5

1.6

0

1

2

3

N
S T

i
(x

10
12

cm
-2

)

: NSTi
: eTi

eref (x10-2 s-1)

e T
i

(x
10

-2
s-1

)

Trap4

Trap5

PZT
373 K

0 1 2 3 4 5 6
1.2

1.3

1.4

1.5

1.6

0

10

20

(a) (b)

Figure 36. dependence of (solid line) or (broken line) determined from the
maximum of the DCTS signal at (a) and (b) .

fluctuated, because both and of Trap5 change gradually with in the figure.

7.7. DCTS for Amorphous Insulators

nm-thick SiN films were deposited on heavily-doped p-type c-Si (p c-Si) at a sub-
strate temperature of C by direct photo-chemical vapor deposition with a low-pressure
mercury lamp using N -diluted mixtures of SiH and NH [44, 45]. An Al electrode with

mm was deposited on SiN by vacuum evaporation. Here, p c-Si and Al act as
electrodes of a capacitor.

Figure 37(a) shows the – characteristics for Capacitors A and B. The leakage current
for Capacitor B at low applied biases ( V) was higher than that for Capacitor A. To
investigate the reason, for Capacitors A and B were measured. During the charging
time (i.e., in ), of V was applied to the Al electrode of an
Al/SiN /p c-Si capacitor. Applying a positive voltage to the Al electrode implies that
holes injected from the Al electrode should flow through SiN . was measured at

in s. Figure 37(b) presents the data of for Capacitors A and B.
was calculated from the measured using Eq. (136) with s , that is,

.
When trap levels in the film are continuously distributed in the band gap, Eq. (130) is

rewritten as
(145)

and
(146)

which are similar to Eqs. (128) and (129). Here, is the thickness ( nm) of SiN . The
above was calculated from Eqs. (145) and (146) and shown in Fig. 37(b), where
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Figure 37. – characteristics (a) and DCTS signals (b) for Capacitors A and B. Here,
is cm.

it was assumed that s because is related to an optical phonon frequency
in the film and is equal to or less than the order of s . As is clear from Fig.37, the
leakage current at V is correlated with the .

The peak value ( ) and time ( ) of for Capacitor A were
cm and s , respectively. Assuming that this peak is due to a discrete trap,
the component of corresponding to this peak is calculated using Eq. (144) and shown
in the broken line of Fig. 37(b), which is in good agreement with . Therefore, one discrete
trap with of eV and traps energetically-distributed between and
eV exist in Capacitor A.

From peaks of ( cm and s ) and (
cm and s ) for Capacitor B, on the other hand, the corresponding

components represent the dotted and dashed-dotted lines in Fig. 37(b), which are in good
agreement with at s and s, respectively. In the SiN film of Capacitor
B, therefore, two discrete traps with approximately and eV were included.

8. Conclusion

Several methods to determine densities and energy levels of impurities and defects affecting
the majority-carrier concentration in semiconductors whose resistivities vary from low to
extremely high have been discussed;

1. Free carrier Concentration Spectroscopy (FCCS) determining densities and energy
levels in a semiconductor using the temperature dependence of the majority-carrier
concentration without any assumptions regarding impurities and defects,

2. Heterojunction-Monitored Capacitance Spectroscopy (HMCS) determining the
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density-of-states in high-resistivity amorphous semiconductors using the transient ca-
pacitance of an amorphous/crystalline semiconductor heterojunction,

3. Discharge Current Transient Spectroscopy (DCTS) determining densities and energy
levels in a semi-insulating semiconductor or an insulator using the transient current
of a diode.

On the other hand, the influence of the excited states of dopants with deep energy levels on
the majority-carrier concentration have been discussed, and a unique distribution function
for dopants including the effect of the excited states of dopants has been proposed and
experimentally tested.
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