Preferred type of presentation:

Poster

Title:

Mechanisms of Changes of Hole Concentration in Al-doped 6H-SiC by Electron Irradiation and Annealing

Body:

SiC is a promising wide band gap semiconductor for fabricating high-power and high-frequency electronic devices capable of operating under radiation environments, because the minority-carrier-lifetime degradation by irradiation in SiC was reported to be lower than in Si and GaAs [1]. Compared with Si [2], however, the understanding of radiation damage in SiC is far from complete [3].

According to our simulation [4], irradiation with 200 keV electrons can replace only substitutional C atoms in SiC, while irradiation with 100 keV electrons cannot. Moreover, electrons with \geq 400 keV can replace all atoms in SiC.

The temperature dependence of hole concentration p(T) in Al-doped 6H-SiC epilayers was obtained by Hall-effect measurements, from which the densities and energy levels of acceptors were determined. Before irradiation, the density of acceptors (N_{A1}) at Ev+0.24 eV in the epilayer was determined to be 1.6×10^{15} cm⁻³, and the density of acceptors (N_{A2}) at Ev+0.4 eV was 1.0×10^{15} cm⁻³.

Irradiation with 200 keV electrons reduced p(T). After irradiation with a $1x10^{16}$ cm⁻² fluence, N_{A1} decreased to $6.0x10^{14}$ cm⁻³, while N_{A2} increased to $2.2x10^{15}$ cm⁻³. After second irradiation with the same fluence, N_{A1} decreased to $< 10^{14}$ cm⁻³, whereas N_{A2} remained. Third irradiation resulted in incapable measurement due to too high resistivity of the irradiated epilayer. After 500 °C annealing for 2 min in Ar, however, N_{A1} increased to $4.0x10^{14}$ cm⁻³ and N_{A2} decreased to $1.6x10^{15}$ cm⁻³, compared with the second irradiation. This is an unexpected phenomenon.

First irradiation with a 1×10^{16} cm⁻² fluence of 100 keV electrons did not change p(T). However, second irradiation with a 2×10^{16} cm⁻² fluence increased p(T) at low temperatures, which is also an unexpected phenomenon. Possible mechanisms of changes of p(T) by electron irradiation and annealing will be discussed.

[1] A.L. Barry, et al., IEEE Trans. Nucl. Sci. 38, 1111 (1991)

[2] H. Matsuura, et al., Jpn. J. Appl. Phys. 45, 2648 (2006)

[3] H. Matsuura, et al., J. Appl. Phys. 104, 043702 (2008)

[4] H. Matsuura, et al., Physica B 376-377, 342 (2006)

Section:

Corresponding e-mail:

matsuura@isc.osakac.ac.jp

Keywords:

Radiation damage, Electron irradiation, SiC, 6H-SiC, p-type SiC

Names;

Hideharu Matsuura, Hideki Yanagisawa, Kozo Nishino, Yoshiko Myojin, Takunori Nojiri, Yukei Matsuyama, and Takeshi Ohshima

Organization:

Department of Electronic Engineering and Computer Science, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan

Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan