Relationship between defects induced by irradiation and reduction of hole concentration in Al-doped 4H-SiC

<u>H. Matsuura*</u>, S. Kagamihara*, Y. Itoh*, T. Ohshima** and H. Itoh** * Osaka Electro-Communication University, Neyagawa, Japan ** Japan Atomic Energy Research Institute, Takasaki, Japan

Keywords: radiation damage, defect, hole concentration, Al-doped 4H-SiC

From the temperature dependence of the hole concentration p(T) in Al-doped 4H-SiC epilayers irradiated with 4.6 MeV electrons with 2.6×10^{14} e/cm², we reported that the density of one acceptor species with 200 meV was significantly reduced while the density of the other acceptor with 350 meV was slightly decreased [1]. From photoluminescence studies, the shallow acceptor was ascribed to an Al atom at a Si site (Al_{Si}). On the other hand, the origin of the deep acceptor was not assigned.

The possible main mechanism of the reduction in the p(T) by the irradiation is (1) a decrease in the Al acceptor density because the Al_{Si} is moved into the interstitial site or because the bond between the Al_{Si} and the nearest neighbour C atom is broken, or (2) the creation of deep hole traps or donor-like

defects. 10 um-thick Al-doped 4H-SiC epilayers were used. The p(T) was obtained by Hall-

effect measurements, shown in Fig.1.

One electron with 200 keV can displace only the C atom, whereas one electron with >500 keV is sufficient to displace the Al or Si atom. By irradiation with 200 keV electrons with 1×10^{16} cm⁻², the decrement of the Al acceptor density is close to the increment of the unknown deep acceptor density, shown in Table 1. This suggests that the bond between the Al_{Si} and the nearest neighbour C atom is broken by the displacement of the C atoms, which results

Fig. 1 Hole concentrations.

in a dec	rease 1	n the	Al a	ccer	otor
density	and ar	ı incr	ease	in	the
density of	of an A	$l_{Si}-V_C$	com	plex	c of
the A	l _{Si} an	id t	he	near	rest
neighbor	ur C va	cancy	. The	erefo	ore,
the origi	n of th	e deep	p acc	epto	r is
consider	ed to b	e Al _{Si} -	-V _C .		

Table 1	Results	from	the	p(T	`)
---------	---------	------	-----	-----	----

	unirradiated	200 keV	4.6 MeV [1]
ΔE_{A1} [meV]	203	217	206
$N_{A1} [x10^{15} \text{ cm}^{-3}]$	5.2	4.3	0.82
ΔE_{A2} [meV]	357	363	383
$N_{A2} [x10^{15} \text{ cm}^{-3}]$	3.5	5.2	3.5
$N_{comp} [x10^{15} \text{ cm}^{-3}]$	0.047	0.21	0.74

1. H. Matsuura et al., Appl. Phys. Lett. 83, 4981 (2003).

Subject Number: #2, Preference: Oral or Poster, E-mail : matsuura@isc.osakac.ac.jp