Decrease in Hole Concentration in Al-Doped 4H-SiC by Irradiation of 200 keV Electrons

Nobumasa Minohara, Yusuke Inagawa, Miyuki Takahashi, Hideharu Matsuura

Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530, Japan, m06715@isc.osakac.ac.jp, TEL/FAX: +81-72-820-9031

Takeshi Ohshima and Hisayoshi Itoh

Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan

Key words: SiC, p-type, Al-doped, electron irradiation, Hall-effect measurement

Abstract

From the temperature dependence of the hole concentration p(T) in Al-doped 4H-SiC epilayers irradiated with 4.6 MeV electrons, we reported that the density (N_{Al}) of a shallow acceptor with Ev + 0.2 eV, which is an Al atom at a Si sublattice site, was significantly reduced, while the density (N_{Deep}) of a deep acceptor with Ev + 0.35 eV was slightly decreased [1]. Here, Ev is the valence band maximum. In unirradiated epilayers, on the other hand, N_{Deep} = 0.6 N_{Al} in a range of N_{Al} between 8×10^{14} and 5×10^{16} cm⁻³ [2].

Since electrons with <0.3 MeV can displace only carbon (C) atoms in SiC whereas electrons with >0.5 MeV displace all the atoms (i.e., C, Al and Si) in SiC [3], we investigate the changes of N_{Al} and N_{Deep} in a 10 µm-thick Al-doped 4H-SiC epilayer by irradiation of 200 keV electrons at fluences of 1×10^{16} and 3×10^{16} cm⁻². At low temperatures, p(T) decreases with increasing fluence, whereas p(T) is unchanged at high temperatures, indicating that by irradiation of 200 keV electrons the N_{Al} is decreased while the sum of N_{Al} and N_{Deep} is unchanged.

From the analysis of p(T), N_{Al} decreases with increasing fluence of 200 keV electrons, while N_{Deep} increases, different from the changes of N_{Al} and N_{Deep} by irradiation of 4.6 MeV electrons. Moreover, the decrement of N_{Al} is nearly equal to the increment of N_{Deep} . Therefore, the displacement of only C atoms by irradiation of 200 keV electrons is considered to change the Al acceptor into the deep acceptor. The changes of N_{Al} and N_{Deep} by irradiation at more fluences $(5x10^{16} \text{ and } 7x10^{16} \text{ cm}^{-2})$ of 200 keV electrons are now investigated.

Reference

[1] H. Matsuura et al.: Appl. Phys. Lett. 83 (2003) 4981.

[2] H. Matsuura et al.: J. Appl. Phys. 96 (2004) 2708.

[3] H. Matsuura et al.: Physica B 376-377 (2006) 342.