Annealing Behavior of Donors Formed by High Fluence Irradiation of High Energy Particles in p-type Silicon

Hideharu Matsuura¹⁾, Takuya Ishida¹⁾, Yasushi Kirihataya¹⁾, Osamu Anzawa²⁾ and Sumio Matsuda²⁾

- 1) Osaka Electro-Communication University
- 2) National Space Development Agency of Japan (NASDA)

B-doped p-type Si has been converted into n-type by high fluence irradiation (higher than 1×10^{17} cm⁻² fluence irradiation for 1 MeV electrons or higher than 1×10^{14} cm⁻² fluence irradiation for 10 MeV protons). We have investigated the annealing behavior of donors or hole traps induced by irradiation from Hall-effect measurements, and have determined the density (N_B) of boron that behaves as an acceptor from Fourier-transform infrared measurements at 8 K.

Si wafers were irradiated by 10 MeV protons with between $3x10^{12}$ and $1x10^{14}$ cm⁻² or 1 MeV electrons with $1x10^{17}$ cm⁻². N_B decreased with the fluence, and hole traps were formed by irradiation. These suggest that the hole concentration p(T) should decrease with the fluence. However, the decrease of N_B and the formation of hole traps cannot lead to the conversion of p-type to n-type, and donors must be induced by irradiation.

p(T) decreased by less than $6x10^{13}$ cm⁻² fluence of 10 MeV protons have not been recovered by 150 °C annealing at all. However, p(T) reduced by $1x10^{14}$ cm⁻² fluence has been increased by this annealing, and n(T) in the type-converted Si irradiated by $1x10^{17}$ cm⁻² fluence of 1 MeV electrons has been decreased by the annealing. Moreover, this type-converted Si has been converted into p-type by 250 °C annealing again.

From the temperature dependence of the electron concentration n(T) in the type-converted Si, donors are found to be located at approximately 0.3 eV below the conduction band minimum. A complex (B_i-O_i) of an interstitial boron and an interstitial oxygen is reported to be annealed out at higher than 200 °C, while a complex of a vacancy and an interstitial oxygen as well as double vacancies are not annealed out at lower than 300 °C. Therefore, these experimental results indicate that the donors should arise from B_i-O_i.