

試験日	1月19日4限	科目	基礎電磁気学 II	クラス	担当者	松浦秀治	年次	学生 番号		氏 名	
参照等語	照・持込 午可条件		一切不可とする					問題 回収	しない	解答用紙の 別紙使用枚数	1 枚

解答における注意事項

- 1.問題3以降は、必ず答えを導き出す過程を詳しく書くこと。 答えだけの場合、正解でも零点とする。
 - 答えが正しくても、導出過程が間違っていれば、正しいところまでの点数とする。
- 2.必ず、単位を書くこと。
- 問題1 次の法則を数式で表せ。用いた記号の定義(説明)および単位を書くこと。(4点×4=16点)
 - 1-1 静磁気におけるクーロンの法則
 - 1-2 アンペアの周回積分の法則(ベクトル表示)
 - 1-3 ビオ・サバールの法則(ベクトル表示)
 - 1-4 ファラデーの法則とレンツの法則
- **問題 2** 電荷 Q [C]をもつ荷電粒子が電界 \vec{E} [V/m]および磁束密度 \vec{B} [T]の中を速度 \vec{v} [m/s]で移動している。このときに荷電粒子が受ける力 \vec{F} [N]を示せ。ただし、 \vec{E} 、 \vec{B} 、 \vec{v} 、 \vec{F} はベクトルである。(4 点)
- 問題3 下図の細い棒磁石にはたらくトルクと回転方向(時計方向、反時計方向)を導き出せ。ただし、磁極の強さ(磁荷)をm [Wb]、支点から N 極までの長さを $L_{\rm N}$ [m]、支点から S 極までの長さを $L_{\rm S}$ [m]、東西方向となす角を $\theta_{\rm N}$ 、 $\theta_{\rm S}$ とし、地磁気による磁界の強さをH [A/m]とする。(1 6 点)

- **問題 4** 直線状の無限長円筒導体がある。円筒導体の内径はa [m]、外径はb [m]であり、a < bである。円筒導体にはI [A]の電流が一様に流れている。円筒導体の中心軸から距離r [m]離れた点での磁界の強さを導き出せ。(1 6 点)
- **問題 5** 半径r [m]、 2回巻きの円形コイルに I [A]の電流を流したとき、コイルの中心での磁界の強さを導き出せ。ただし、コイルの長さは無視できる。(1 6 点)
- **問題 6** 無限長の細い直線状導線が 3 本あり、それぞれ平行である。導線間の距離はすべて d [m] であり、導線に流す電流はすべて I [A] である。各導線を導線 A、導線 B、導線 C と呼ぶことにする。導線 A と導線 B に流れる電流の方向は同じであるが、導線 C に流れる電流の方向だけは逆方向である。このとき、導線 A に 1 m あたりはたらく力の大きさと方向を導き出せ。(1 6 点)
- **問題7** 磁束密度 B [T]中、下図のように磁界の方向と垂直および導体の長さ方向と垂直に、長さ L [m]の直線状導体を速度 ν [m/s]で移動させた。定常状態になった後、導体内に発生する電界 E [V/m]を、導線の中に存在する電子に注目して導き出せ。ただし、磁界の方向と導体の長さ方向とは垂直である。(1 6 点)

